Answer:
14.2 m
Explanation:
Using conservation of energy:
PE at top = KE at bottom
mgh = ½ mv²
h = v² / (2g)
h = (16.7 m/s)² / (2 × 9.8 m/s²)
h = 14.2 m
Using kinematics:
Given:
v₀ = 16.7 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (16.7 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 14.2 m
Answer:
positive
Explanation:
The ball is rolling down with a negative velocity, but the velocity is slowing down. therefore the velocity must increase in order for the ball to slow down.
For example let the ball's initial velocity be -15 m/s. and it is slowing down to let's say -13 m/s. Well this means that it's velocity has increase by 2 m/s. So, its acceleration is positive.
Answer:
d= 7.32 mm
Explanation:
Given that
E= 110 GPa
σ = 240 MPa
P= 6640 N
L= 370 mm
ΔL = 0.53
Area A= πr²
We know that elongation due to load given as



A= 42.14 mm²
πr² = 42.14 mm²
r=3.66 mm
diameter ,d= 2r
d= 7.32 mm
To solve this problem it is necessary to apply the concepts related to the change of Energy in photons and the conservation of energy.
From the theory we could consider that the energy change is subject to

Where
Initial Energy
Energy loses
Replacing we have that


Therefore the Kinetic energy of the electron once it has broken free of the metal surface is 0.8eV
Answer:
Yes
Explanation:
The plank (also called a front hold, hover, or abdominal bridge) is an isometric core strength exercise that involves maintaining a position similar to a push-up for the maximum possible time