satellite originally moves in a circular orbit of radius R around the Earth. Suppose it is moved into a circular orbit of radius 4R.
(i) What does the force exerted on the satellite then become?
eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(ii) What happens to the satellite's speed?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(iii) What happens to its period?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large</span></span>
<span>
</span>
<span>coefficient
Let's look at the 3 possibilities and see what they are for </span>3H₂O₂ coefficient - This is used to indicate that multiple molecules are used for the formula. In 3H₂O₂ that indicates that we are talking about 3 molecules of H₂O₂ subscript - This is a small number set in a smaller font and placed low to the elements. It indicates the number of each type of atom in the compound. For the formula 3H₂O₂ there are 2 subscripts. Both of them being the number "2" set small and low just after the letters H and O. Those subscripts indicate that there are 2 hydrogen and 2 oxygen atoms per molecule.
element - This is the abbreviation for the elements used in the compound. In <span>3H₂O₂</span> there are 2 different elements. H to indicate hydrogen, and O to indicate oxygen.
Answer:
nuclear battery to generate energy
Answer:
You will fly forward in the bus until you hit something.
Explanation:
While standing there on the bus, you are traveling at the same speed as the bus. If the bus suddenly stops, you will still be traveling at the same speed you started with. That is until you hit something hard enough or big enough to stop you.
<span>We can answer this using
the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²
-----> 1</span></span>
ω² = ω₀² + 2αθ
-----> 2
Where:
θ = final angular
displacement = 70.4 rad
θ₀ = initial
angular displacement = 0
ω₀ = initial angular
speed
ω = final angular speed
t = time = 3.80 s
α = angular acceleration
= -5.20 rad/s^2
Substituting the values
into equation 1:<span>
70.4 = 0 + ω₀(3.80)
+ ½(-5.20)(3.80)² </span><span>
ω₀ = (70.4
+ 37.544) / 3.80 </span><span>
ω₀ = 28.406
rad/s </span><span>
Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4
ω = 8.65 rad/s
</span>