Accuracy?
filler text filler text filler text
Explanation:
Terminal velocity is given by:

Here, m is the mass of the falling object, g is the gravitational acceleration,
is the drag coefficient,
is the fluid density through which the object is falling, and A is the projected area of the object. in this case the projected area is given by:

Recall that drag coefficient for a horizontal skydiver is equal to 1 and air density is
.

Without drag contribution the motion of the person is an uniformly accelerated motion, thus:

The total work done is 5980 Joules and the power expended is 57 Watts.
<h3>What is work done?</h3>
The work done is the work done in the gravitational field as the bucket is raised up Thus work required to remove the bucket Wb;
Wb = 13.9 kg * 25.9 m * 9.8 m/s^2 = 3530 Joules
Height of the center of mass of chain = 25.9 / 2 = 12.95 m
Work done by the chain Wc;
Wc = 12.95 * 19.3 * 9.8 = 2450 Joules
Total work = 3530 + 2450 = 5980 Joules
Power expended = W / t = 5980 J / 105 sec = 57 J/s = 57 Watts
Learn more about work done:brainly.com/question/13662169
#SPJ1
The most important characteristics that are exhibited by metals are-
1- Metals are ductile
2-Most metals are conductive in nature.
3-Most metals are malleable.
4- Metals have strong inter molecular force of attraction between the.
5-Metals have luster.
6-Metals are sonorous.
Here we are given Tungsten filament.
Tungsten is a metal.So it must be conductive and as well as ductile in nature.
The electric filament that we are using in our electric bulb glows due to the heating effect of current.Hence the chosen substances for glowing electric bulb must have high melting point.
The melting point of tungsten is 1650 degree celsius which is very high.That's why it is used in electric bulb.
Hence the correct answer to the question is the third one i.e Tungsten is ductile,has a high melting point, and is electrically conductive.
It doesn't on account of radio waves are longer than optical waves. Radio waves are a sort of electromagnetic radiation with wavelengths in the electromagnetic range longer than infrared light. These long waves are in the radio locale of the electromagnetic range.