Answer:
The vertical distance that the ski jumper fell is 417.45 m.
Explanation:
Given;
initial horizontal velocity of the jumper, = 26 m/s
horizontal distance of the jumper, dx = 240 m
The time of the motion is given by;
dx = Vₓt
t = dx / Vₓ
t = 240 / 26
t = 9.23 s
The vertical distance traveled by the diver is given by;
initial vertical velocity, , = 0
Therefore, the vertical distance that the ski jumper fell is 417.45 m.
Answer:
the switching circuitry is opened the soft iron armature is replaced to tasty le macha the switching circuitry is closed explain what happens when the switch circuit is a wonder you know about the characteristics of open to close this which right take the example of an electric generator for an electric motor which rotates in half rotation and change the armature and just try it ok I am sorry
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.