First, calculate for the distance between the given points A and B by using the equation,
<span> D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>
Substitute the known values:
<span> D = sqrt((9 – 2)2 + (25 – 1)2)</span>
<span> D = 25 m</span>
I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.
<span> t = (25 m)/ (50 m/s) = 0.5 s</span>
<span>Thus, it will take 0.5s for the particle to complete the route. </span>
Answer:
θ₁ = 0.5 revolution
Explanation:
We will use the conservation of angular momentum as follows:

where,
I₁ = initial moment of inertia = 18 kg.m²
I₂ = Final moment of inertia = 3.6 kg.m²
ω₁ = initial angular velocity = ?
ω₂ = Final Angular velocity =
= 1.67 rev/s
Therefore,

where,
θ₁ = revolutions if she had not tucked at all = ?
t₁ = time = 1.5 s
Therefore,

<u>θ₁ = 0.5 revolution</u>
Divide the distance traveled by the time it took:
(100 m) / (4.2 s) ≈ 23.8 m/s
Answer:
D. Nuclear fusion
Explanation:
Nuclear fusion is a nuclear reaction where nuclei of atoms( one of low atomic number and another with a higher atomic number) join together to form a much bigger nucleus and release a lot of energy.In the sun, which is a star of course, where light is released,hydrogen is converted to helium and the process releases massive energy into space in form of heat and light.
Answer:
Given: mass 1200kg
initial velocity: 4m/s
finial velocity: 10 m/s
time 3 sec
then
speed; initial velocity + final velocity/2
4+10/3
: 4.66m/s2