Answer:
E = 1,873 10³ N / C
Explanation:
For this exercise we can use Gauss's law
Ф = E. dA = / ε₀
Where q_{int} is the charge inside an artificial surface that surrounds the charged body, in this case with the body it has a spherical shape, the Gaussian surface is a wait with radius r = 1.35 m that is greater than the radius of the sphere.
The field lines of the sphere are parallel to the radii of the Gaussian surface so the scald product is reduced to the algebraic product.
The surface of a sphere is
A = 4π r²
E 4π r² = q_{int} /ε₀
The net charge within the Gauussian surface is the charge in the sphere of q1 = + 530 10⁻⁹ C and the point charge in the center q2 = -200 10⁻⁹ C, since all the charge can be considered in the center the net charge is
q_{int} = q₁ + q₂
q_{int} = (530 - 200) 10⁻⁹
q_{int} = 330 10⁻⁹ C
The electric field is
E = 1 / 4πε₀ q_{int} / r²
k = 1 / 4πε₀
E = k q_{int}/ r²
Let's calculate
E = 8.99 10⁹ 330 10⁻⁹/ 1.32²
E = 1,873 10³ N / C
By pollution rotting the air and making is worse for us to breath
Answer:
It grows
Explanation:
The blacks holes will absorb
Me hoizontally stretching me like a noodle by the spaghtification process,thus growing bigger.
Answer:
I would believe that it would be the last option
Explanation:
Physical science is a type of science that mainly focuses on natural objects that are not alive, such as minerals and rocks.
The magnitude of the induced emf is given by:
ℰ = |Δφ/Δt|
ℰ = emf, Δφ = change in magnetic flux, Δt = elapsed time
The magnetic field is perpendicular to the loop, so the magnetic flux φ is given by:
φ = BA
B = magnetic field strength, A = loop area
The area of the loop A is given by:
A = πr²
r = loop radius
Make a substitution:
φ = B2πr²
Since the strength of the magnetic field is changing while the radius of the loop isn't changing, the change in magnetic flux Δφ is given by:
Δφ = ΔB2πr²
ΔB = change in magnetic field strength
Make another substitution:
ℰ = |ΔB2πr²/Δt|
Given values:
ΔB = 0.20T - 0.40T = -0.20T, r = 0.50m, Δt = 2.5s
Plug in and solve for ℰ:
ℰ = |(-0.20)(2π)(0.50)²/2.5|
ℰ = 0.13V