Answer:
Para saber el puntaje máximo que obtuvo el 75% de los alumnos se debe calcular el tercer cuartil.
Step-by-step explanation:
Los Cuantiles (cuartiles, deciles, percentiles) son medidas de localización cuya función es informar del valor de la variable que ocupará la posición (en tanto por cien) que interese respecto de todo el conjunto de variables.
Los cuartiles son medidas estadísticas de posición que tienen la propiedad de dividir la serie estadística en cuatro grupos de números iguales de términos.
El primer cuartil o cuartil inferior es aquel valor de la variable tal que la cuarta parte (25%) de las observaciones son inferiores o iguales a él, y el resto (75%) es superior o igual. El segundo cuartil es la mediana, ya que se trata del valor localizado en la mitad de la distribución. Finalmente, el tercer cuartil o cuartil superior es un valor tal que las tres cuartas partes de las observaciones son inferiores o iguales a él.
En otras palabras, el primer cuartil Q1, es el valor en el cual o por debajo del cual queda aproximadamente un cuarto (25%) de todos los valores de la sucesión (ordenada); El segundo cuartil Q2 es el valor por debajo del cual queda el 50% de los datos (Mediana), el tercer cuartil Q3 es el valor por debajo del cual quedan las tres cuartas partes (75%) de los datos. Es decir, Q1, Q2 y Q3 determinan los valores correspondientes al 25%, al 50% y al 75% de los datos respectivamente. Q2 coincide con la mediana.
<u><em>Para saber el puntaje máximo que obtuvo el 75% de los alumnos se debe calcular el tercer cuartil.</em></u>
<u><em></em></u>
Answer:
Step-by-step explanation:
hello : note 297 no 279
297 =3×99
99 = 3 ×33
33=3×11
this the geometric sequence. ( comon : 3)
the nth term is : An = A1 × r^n when : r = 3 and A1 =11
if n = 19 A19 = 11×3^19
If
is the cumulative distribution function for
, then

Then the probability density function for
is
:

The
th moment of
is
![E[Y^n]=\displaystyle\int_{-\infty}^\infty y^nf_Y(y)\,\mathrm dy=\frac1{\sqrt{2\pi}}\int_0^\infty y^{n-1}e^{-\frac12(\ln y)^2}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20y%5Enf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_0%5E%5Cinfty%20y%5E%7Bn-1%7De%5E%7B-%5Cfrac12%28%5Cln%20y%29%5E2%7D%5C%2C%5Cmathrm%20dy)
Let
, so that
and
:
![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu}e^{-\frac12u^2}\,\mathrm du=\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu-\frac12u^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu%7De%5E%7B-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du)
Complete the square in the exponent:

![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{\frac12(n^2-(u-n)^2)}\,\mathrm du=\frac{e^{\frac12n^2}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B%5Cfrac12%28n%5E2-%28u-n%29%5E2%29%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac%7Be%5E%7B%5Cfrac12n%5E2%7D%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du)
But
is exactly the PDF of a normal distribution with mean
and variance 1; in other words, the 0th moment of a random variable
:
![E[U^0]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du=1](https://tex.z-dn.net/?f=E%5BU%5E0%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du%3D1)
so we end up with
![E[Y^n]=e^{\frac12n^2}](https://tex.z-dn.net/?f=E%5BY%5En%5D%3De%5E%7B%5Cfrac12n%5E2%7D)
The value of x is: Solve for x by simplifying both sides of the equation, then isolating the variable.
x=−9/4
Answer:
$185 per person
Step-by-step explanation:
22,200/120=185