The number of moles of the magnesium (mg) is 0.00067 mol.
The number of moles of hydrogen gas is 0.0008 mol.
The volume of 1 more hydrogen gas (mL) at STP is 22.4 L.
<h3>
Number of moles of the magnesium (mg)</h3>
The number of moles of the magnesium (mg) is calculated as follows;
number of moles = reacting mass / molar mass
molar mass of magnesium (mg) = 24 g/mol
number of moles = 0.016 g / 24 g/mol = 0.00067 mol.
<h3>Number of moles of hydrogen gas</h3>
PV = nRT
n = PV/RT
Apply Boyle's law to determine the change in volume.
P1V1 = P2V2
V2 = (P1V1)/P2
V2 = (101.39 x 146)/(116.54)
V2 = 127.02 mL
Now determine the number of moles using the following value of ideal constant.
R = 8.314 LkPa/mol.K
n = (15.15 kPa x 0.127 L)/(8.314 x 290.95)
n = 0.0008
<h3>Volume of 1 mole of hydrogen gas at STP</h3>
V = nRT/P
V = (1 x 8.314 x 273) / (101.325)
V = 22.4 L
Learn more about number of moles here: brainly.com/question/13314627
#SPJ1
Answer:
The atomic number is the number of the elements inside the periodic table and the mass is the weight or a number under the elements.
Explanation:
Correct me if I am wrong
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution