<h3>
<u>Answer</u> :</h3>
A. kilogram is the SI unit used to measure mass of body.
- <u>1 kilogram = 100 gram</u>
B. litre is the SI unit used to measure volume of substance.
C. meter is the unit used to measure length of body.
- <u>1 met</u><u>e</u><u>r</u><u> = 100 centimeters</u>
D. Kelvin is the unit used to measure temperature of body.
Hence, (B) is the correct answer!
Cheers!
Chemical should be your answer.
<u>Answer:</u> The mass of iron (III) nitrate is 11.16 g/mol
<u>Explanation:</u>
To calculate the mass of solute, we use the equation used to calculate the molarity of solution:

We are given:
Molarity of solution = 0.3556 M
Molar mass of Iron (III) nitrate = 241.86 g/mol
Volume of solution = 129.8 mL
Putting values in above equation, we get:

Hence, the mass of iron (III) nitrate is 11.16 g/mol
Answer:
Empirical formula: BH3
Molecular Formula: B2H6
Explanation:
To solve the exercise, we need to know how many boron atoms and how many hydrogen atoms the compound has. We know that of the total weight of the compound, 78.14% correspond to boron and 21.86% to hydrogen. As the weight of the compound is between 27 g and 28 g, using the above percentages we can solve that the compound has between 21.1 g and 21.8 g of boron, and between 5.9 g and 6.1 g of hydrogen:
100% _____ 27 g
78.14% _____ x = 78.14% * 27g / 100% = 21.1 g boron
100% ______27 g
21.86% ______ x = 21.86% * 27g / 100% = 5.9 g hydrogen
100% _____ 28 g
78.14% _____ x = 78.14% * 28g / 100% = 21.8 g boron
100% _____ 28g
21.86% _____ x = 21.86% * 28g / 100% = 6.1 g hydrogen
So, if the atomic weight of boron is 10.8 g, there must be two boron atoms in the compound that sum 21.6 g. The weight of hydrogen is 1 g, so the compound must have six hydrogen atoms.
The molecular formula represents the real amount of atoms that form a compound. Therefore, the molecular formula of the compound is B2H6.
The empirical formula is the minimum expression that represents the proportion of atoms in a compound. For example, ethane has 2 carbon atoms and 6 hydrogen atoms, so its molecular formula is C2H6, however, its empirical formula is CH3. Therefore, the empirical formula of the boron compound is BH3.
No, hydrogen can only hold one bond and that's it. It only needs to be paired with one bond.