Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

Answer:
a. Plum pudding model
Explanation:
The plum pudding model of the atom was proposed by J.J. Thomson. It was the model he derived from his experiment on the gas discharge tube.
J.J Thomson was the first person to discover electrons which he called cathode rays because in the discharge tube, they emanate from the cathode.
- This led him to suggest the plum pudding model of the atom.
- The model reflects electrons being surrounded by a volume of negative charges.
The strong Base with a pH of 12 is reduced by 4 units upon being added with solution Y. If you added a strong acid to the strong base, all ions are present in the solution, yes? So every OH- is neutralised by every H+ for example, meaning the resultant pH should be 7. The resultant pH is only 8 however, so solution Y must be a <em>weak acid </em>only!
Answer:
Carbon dioxide is moving out of the living things.
Explanation:
The food materials eaten by living things contain carbon in the form of complex organic matter. When living things feed, they ingest this complex organic material into their bodies.
During the process of digestion, this complex organic material is broken down to give glucose. Glucose is the energy molecule in living things. Excess glucose in the body is stored as glycogen.
During cellular respiration, glucose is broken down to release carbon dioxide. Hence, at night when the giraffe has stopped eating, cellular respiration continues to occur and carbon dioxide is released, that is, carbon dioxide continues to move out of living things at night.