Answer:
317 g
Explanation:
Cu + 2HCl --> CuCl2 +H2
1 : 2 1 : 1
1 mole of Cu = 63.5 g
1 mole of H2 = 2g
1 mole Cu produces = 1 mole of H2
63.5 g of Cu produces = 2 g of H2
So
10 g of H2 will be produced from = (63.5/2)*10 = 317 g of Copper
Thomson<span> is the scientist who designed an experiment that enabled the first successful detection of an individual subatomic particle. </span>J.J. Thomson<span> (Sir </span>Joseph John Thomson<span>, 1856-1940), who demonstrated in 1897 that "cathode rays" consisted of negatively-charged particles, later named electrons.</span>
I think it’s “Removed from”
Answer:- 
Solution:- First of all we calculate the heat absorbed or released when the solute is added to the solvent. Here the solute is LiCl and the solvent is water.
To calculate the heat absorbed or released we use the formula:

q = heat absorbed or released
m = mass of solution
s = specific heat capacity
and
= change in temperature
mass of solution = mass of solute + mass of solvent
mass of solution = 5.00 g + 100.0 g = 105.0 g
(note:- density of pure water is 1 g per mL so the mass is same as its volume)
= 33.0 - 23.0 = 10.0 degree C
s = 
Let's plug in the values in the formula and calculate q.
q = 
q = 4389 J
To calculate the enthalpy of solution that is
we convert q to kJ and divide by the moles of solute.
moles of solute = 
= 0.118 moles
q =
= 4.389 kJ

= 
Since the heat is released which is also clear from the rise in temperature of the solution, the sign of enthapy of solution will be negative.
So, 
Answer:
Explanation:
In case of Water there are strong hydrogen boding excist as result shows high boiling point, wher as in case of methane the there is no hydrogen bond and excist weak vanderwall attraction between the molcuels so the lower boiling point.