C the empty pills, because they can be linked back to see if death was a side effect.
Answer:
103.9 g
Explanation:
First <u>we convert 54.0 g of propane (C₃H₈) into moles</u>, using its <em>molar mass</em>:
- 54.0 g ÷ 44 g/mol = 1.23 mol C₃H₈
Then we <u>convert 1.23 moles of C₃H₈ into moles of CO₂</u>, using the <em>stoichiometric coefficients</em>:
- 1.23 mol C₃H₈ *
= 3.69 mol CO₂
We <u>convert 3.69 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 3.69 mol CO₂ * 44 g/mol = 162.36 g
And <u>apply the given yield</u>:
- 162.36 g * 64.0/100 = 103.9 g
Answer:
Single Displacement reaction
In a displacement reaction, a more reactive element replaces a less reactive element from a compound.
Change in colour takes place with no precipitate forms.
Metals react with the salt solution of another metal.
Examples:
2KI + Cl2 → 2KCl + I2
CuSO4 + Zn → ZnSO4 + Cu
Double displacement reaction
In a double displacement reaction, two atoms or a group of atoms switch places to form new compounds.
Precipitate is formed.
Salt solutions of two different metals react with each other.
Examples:
Na2SO4 + BaCl2 → BaSO4 + 2NaCl
2KBr + BaCl2 → 2KCl + BaBr2
Hope this helps...Please Mark as Brainliest!!
Grams of Phosphorus = 4.14 grams
Grams of white compound = 27.8 grams
Grams of Chlorine would be = 27.8 - 4.14 = 23.66 grams
Calculating moles which would be grams / molar mass
Molar mass of P = 30.97 grams / moles; Molar mass of Cl = 35.45 grams / moles
Moles of Phosphorus = 4.14 grams / 30.97 grams / moles = 0.1337 moles
Moles of Chlorine = 23.66 grams / 35.45 grams / moles = 0.6674 moles
Calculating the ratios by dividing with the small entity
P = 0.1337 moles / 0.1337 moles = 1
Cl = 0.6674 moles / 0.1337 moles = 5
So the empirical formula would be PCl5
Answer:Butane > ethane > methane, because between bigger molecules there are stronger van der Waals forces and also higher molar mass means they need to be given more energy to have enough kinetic energy to move quickly, freely in gas.
There are multiple butene isomers (Butene) and some (2-Butenes - cis and trans) actually have higher boiling point than n-Butane (there is also Isobutane, of course, with quite much lower boiling point than all of them) and some (1-Butene, Isobutylene) have lower, so this isn't really a fair or simple question. But on simplest level, it can again be said that 1-butene has lower boiling point because it has very similar shape but slightly lower molar mass (2H less) than n-butane.
Explanation: