Answer:
1.566 x 10^2
Move the decimal to where the number being multiplied by 10^x is greater than 1 but less than 10. Then multiply it by 10^x
X is the number of times you moved the decimal, so in this case it would be 10^2
Answer:
Tension in the chains - In a chain drive, technically, you have a closed-chain (which has no end) going around 2 pulley or gears; looking closely you have 2 parallel chains going in opposite direction. If kept in horizontal direction, the one below the other is the slack side and the other the tight side. The tension on the upper or tight side is more than the slack side. So you need to keep in mind to keep your chain drive tight so that there is no loss or rotation or lags.
Sizes of the pulley/gear - The chain will be warped around a pair of pulley or gear. The sizes of these pulley/gear will also determine the efficiency of the chain drive (consider one big and one small)
Number of pulley/gear - If the number of pulley/gear is more and chain wrapped on it with little complexity will result in decrease in efficiency because of extra tension.
Length of the chain drive - You cannot have much too long chain drive. It will make your slack side more heavy because the end are further away. You have to apply more power and possibilities of lag increases decreasing efficiency. In an ideal situation, this won't happen, but this world isn't ideal.
Friction between chains & pulley/gear - If you have studied gears (involving its teeth), you will come to know that there is friction offered on the two meeting surfaces.
Angle of contact - This would have been explained better with a diagram. Although, if you are familiar with the terms you won't have difficulty understanding. Angle of contact is the angle the chain forms with the pulley/gear at the point of contact with the center of the pulley. The angle of contact should not be too small, or else the things will be slippery.
Explanation:
Answer:
what is the direction of the sum of these two vectors?
Answer:
4 times
Explanation:
As we know that the energy of a wave is directly proportional to the square of the amplitude of the wave,
Here, the amplitude of the wave A is twice as compared to B.
So, the energy of wave A is 4 times the energy of wave B.
Answer:
<h2>
m/s ^2</h2><h2 />
Explanation:
Solution,
When a certain object comes in motion from rest, in the case, initial velocity = 0 m/s
Initial velocity ( u ) = 0 m/s
Final velocity ( v ) = 72 km/h ( Given)
We have to convert 72 km /h in m/s


m/s
Final velocity ( v ) = 20 m/s
Time taken ( t ) = 2 seconds
Acceleration (a) = ?
Now,
we have,



m/s ^2
Hope this helps...
Good luck on your assignment..