Answer:
Technician B
Explanation:
Technician B is correct in his argument. This is because according to what he said, as the computer pulses stimuli the coil will turn on and off, promoting an increase in the voltage that will cause the fluctuation. Technician A is incorrect because the procedure he indicated imposes that the voltage is checked at the negative terminal and not at the positive.
Compound machine is the answer
Answer:
That's either a cable-stayed bridge or a cantilever bridge
Answer:
Average heat transfer =42.448w/m^2k
Nud = 13.45978
Explanation:
See attachment for step by step guide
Answer:
B A and C
Explanation:
Given:
Specimen σ
σ
A +450 -150
B +300 -300
C +500 -200
Solution:
Compute the mean stress
σ
= (σ
+ σ
)/2
σ
= (450 + (-150)) / 2
= (450 - 150) / 2
= 300/2
σ
= 150 MPa
σ
= (300 + (-300))/2
= (300 - 300) / 2
= 0/2
σ
= 0 MPa
σ
= (500 + (-200))/2
= (500 - 200) / 2
= 300/2
σ
= 150 MPa
Compute stress amplitude:
σ
= (σ
- σ
)/2
σ
= (450 - (-150)) / 2
= (450 + 150) / 2
= 600/2
σ
= 300 MPa
σ
= (300- (-300)) / 2
= (300 + 300) / 2
= 600/2
σ
= 300 MPa
σ
= (500 - (-200))/2
= (500 + 200) / 2
= 700 / 2
σ
= 350 MPa
From the above results it is concluded that the longest fatigue lifetime is of specimen B because it has the minimum mean stress.
Next, the specimen A has the fatigue lifetime which is shorter than B but longer than specimen C.
In the last comes specimen C which has the shortest fatigue lifetime because it has the higher mean stress and highest stress amplitude.