The balanced reaction is:
MnO2<span>(s) + 4HCl(aq) → Cl2(g) + MnCl2(aq) + 2H2O(l)
</span>
We are given the amount of hydrochloric acid to be used for the reaction. This will be the starting point for the calculations.
1.82 mol HCl ( 1 mol Cl2 / 4 mol HCl) = 0.46 mol Cl2
Therefore, 0.46 mol of chlorine gas is produced for the reaction of hydrochloric acid and manganese oxide.
Answer:
P = 30.1 atm
Explanation:
Given data:
Temperature of vessel = 25°C
Volume of vessel = 10.00 L
Moles in vessel = A + B = 5.25 mol + 7.05 mol = 12.3 moles
Total pressure inside vessel = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
25+273 = 298 K
P = nRT/V
P = 12.3 mol × 0.0821 atm.L/ mol.K × 298 K / 10.00 L
P = 300.93 / 10.00 L
P = 30.1 atm
The reaction between butanoic acid and ethanol is:
CH3CH2CH2COOH + CH3CH2OH → CH3CH2CH2COOCH3CH2 + H2O
Based on the reaction stoichiometry:
1 mole of butanoic acid forms 1 mole of ethyl butyrate
Now,
Molar mass of Butanoic acid = 88.0 g/mol
Given mass of butanoic acid = 7.20 g
Therefore, # moles of butanoic acid reacted = 7.20/88.0 = 0.0818 moles
# moles of ethyl butyrate formed = 0.0818 moles
Molar mass of ethyl butyrate = 116 g/mol
Mass of ethyl butyrate synthesized = 0.0818 * 116 = 9.49 g
Answer:
The given compound cannot be cocaine.
Explanation:
The chemist can comment on the nature of compound being cocaine or not from the depression in freezing point.
Depression in freezing point of is related to molality as:
Depression in freezing point = Kf X molality
Where
Kf = cryoscopic constant = 4.90°C/m
depression in freezing point = normal freezing point - freezing point of solution
depression in freezing point = 5.5-3.9 = 1.6°C
1.6°C = 4.90 X molality

we know that:

therefore
moles = 0.327X0.008 = 0.00261 mol


The molar mass of cocaine is 303.353
So the given compound cannot be cocaine.
Answer:
6.022 × 10²² atoms
Explanation:
Generally 1 mol of any element contains 6.02×10^23 atoms. The number 6.022 × 10²³ is known as Avogadro's number.
Mass of Aluminium = 2.70g
Molar mass = 27g/mol
Number of moles = Mass / Molar mass = 2.70 / 27 = 0.1 mol
1 mol = 6.022 × 10²³
0.1 mol = x
x = 6.022 × 10²³ * 0.1 = 6.022 × 10²² atoms