Answer:
The relative rates of diffusion for methane and oxygen is 1.4142.
Methane gas will be able to travel 1.4142 meter in the same conditions.
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. Mathematically written as:

We are given:
Molar mass of methane gas, m = 16 g/mol
Molar mass of oxygen gas,m' = 32 g/mol
By taking their ratio, we get:


The relative rates of diffusion for methane and oxygen is 1.4142.
If oxygen gas travels 1 meters in time t.
Rate of diffusion of oxygen =
If methane gas travels travels in y meters in time t.
Rate of diffusion of methane=

y = 1.4142 m
Methane gas will be able to travel 1.4142 meter in the same conditions.
(2) three fewer valence electrons is your answer.
The formula for the compounds in the reaction are as follows with the respective states
Carbon monoxide - CO (g)
hydrogen - H₂ (g)
methane - CH₄(g)
water - H₂O (l)
reaction of carbon monoxide with hydrogen gas gives rise to methane and water
the balanced chemical equation for the above reaction is as follows
CO(g) + 3H₂(g) --> CH₄(g) + H₂O(l)
Answer:
C. Hb binds O2 more tightly than Mb.
Explanation:
<u>Hb and Mb are both oxygen carrier protiens which contain the heme group. Hb has 4 heme units in 1 moleucle which work via coperative effect. On the other hand, Mb has only one heme unit. </u>
<u>From above theory, statement A and B are correct.</u>
<u>Although the heme group of the Mb is identical to those of Hb, Mb has a higher affinity for carrying oxygen than hemoglobin.</u>
<u>Hence, Statement C is wrong.</u>
Thats why the function of hemoglobin is to transport oxygen and that of myoglobin is to store oxygen.
<u>When a curve is plotted between oxygen accepted and the pressure of the oxygen, Hb shows sigmoidal, whereas Mb shows hyperbolic oxygen saturation curves.</u><u> The statement D is correct.</u>
<u>Bohr effect and various factors decribe the statement : Hb-oxygen binding is dependent on physiological changes in pH, whereas Mb-oxygen binding is not. </u><u>The statement E is also correct.</u>