Answer:
twelve facesFrom left to right the solids are tetrahedron (four sides), cube (six sides), octahedron (eight faces), dodecahedron (twelve faces), and icosahedron (twenty faces).
Explanation:
Ayo hope you enjoy
<span>The fahrenheit temperature is 927965. It is calculated using the formula 515515 Degree Cx1.8+32=927965. The degree celcius and fahrenheit are two units two measure temperature. If the value is given in celcius it can be converted into fahrenheit using the above formula.</span>
Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4
-Synodic period is the period of celestial bodies observed on the moving planet(mostly earth)
Sideral period is the period comparing to the fixed stars without motion of the earth involved.
(I will explain the second question with an example, so it's easier to understand)
-For Sideral month for example of the moon it cactually complete one revolution in around 27.3 days.
However, since the earth moves, for us it took some more time to see the moon the same as before (fullmoon to fullmoon) again. That make synodic month of the moon to be around 29.5 days.
Answer:
62.8 μC
Explanation:
Here is the complete question
The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?
Solution
The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ
So, Q = ∫∫∫ρdV
Q = ∫∫∫ρr²sinθdθdrdΦ
Q = ∫∫∫(0.2r²)r²sinθdθdrdΦ
Q = ∫∫∫0.2r⁴sinθdθdrdΦ
We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π
So, Q = ∫∫∫0.2r⁴sinθdθdrdΦ
Q = ∫∫∫0.2r⁴[∫sinθdθ]drdΦ
Q = ∫∫0.2r⁴[-cosθ]drdΦ
Q = ∫∫0.2r⁴-[cosπ - cos0]drdΦ
Q = ∫∫∫0.2r⁴-[-1 - 1]drdΦ
Q = ∫∫0.2r⁴-[- 2]drdΦ
Q = ∫∫0.2r⁴(2)drdΦ
Q = ∫∫0.4r⁴drdΦ
Q = ∫0.4r⁴dr∫dΦ
Q = ∫0.4r⁴dr[Φ]
Q = ∫0.4r⁴dr[2π - 0]
Q = ∫0.4r⁴dr[2π]
Q = ∫0.8πr⁴dr
Q = 0.8π∫r⁴dr
Q = 0.8π[r⁵/5]
Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]
Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]
Q = 0.8π[0.025 m⁵ - 0 m⁵]
Q = 0.8π[0.025 m⁵]
Q = (0.02π mC/m⁵) m⁵
Q = 0.0628 mC
Q = 0.0628 × 10⁻³ C
Q = 62.8 × 10⁻³ × 10⁻³ C
Q = 62.8 × 10⁻⁶ C
Q = 62.8 μC