16
if you add 9+10 you get 18 - 7+6
Answer:
mechanical power used to overcome frictional effects in piping is 2.37 hp
Explanation:
given data
efficient pump = 80%
power input = 20 hp
rate = 1.5 ft³/s
free surface = 80 ft
solution
we use mechanical pumping power delivered to water is
.............1
put here value
= (0.80)(20)
= 16 hp
and
now we get change in the total mechanical energy of water is equal to the change in its potential energy
..............2
and that can be express as
..................3
so
......4
solve it we get
hp
so here
due to frictional effects, mechanical power lost in piping
we get here
put here value
= 16 -13.614
= 2.37 hp
so mechanical power used to overcome frictional effects in piping is 2.37 hp
Answer:
See explaination
Explanation:
Lets first consider the term Isentropic efficiency. The isentropic efficiency of a compressor or pump is defined as the ratio of the work input to an isentropic process, to the work input to the actual process between the same inlet and exit pressures. IN practice, compressors are intentionally cooled to minimize the work input.
Please kindly check attachment for the step by step solution of the given problem.
Explanation:
Conservation of velocity equation
The weight of the specimen in SSD condition is 373.3 cc
<u>Explanation</u>:
a) Apparent specific gravity = 
Where,
A = mass of oven dried test sample in air = 1034 g
B = saturated surface test sample in air = 1048.9 g
C = apparent mass of saturated test sample in water = 975.6 g
apparent specific gravity =
= 
Apparent specific gravity = 2.88
b) Bulk specific gravity 

= 2.76
c) Bulk specific gravity (SSD):


= 2.80
d) Absorption% :


Absorption = 1.44 %
e) Bulk Volume :


= 