Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
This statement is true. The point located at the geometric center of an object is indeed called the object's center of gravity. Center of gravity is the average of the weight of a resultant of the parallel forces, including all the particles that is passing through its body.
#3, they both come after infared and are not harmful to living cells.
Acceleration = final velocity - inital / time
a = 75-10 / 7
a = 65 / 7
a = 9.29 m/s^2
Not entirely sure if you're saying Homologous , but assuming you do , the homologous chromosomes seperate in the anaphase stage of Mitsosis of the Cell cycle