Answer:
(a) Projectile B will travel 4 times as far as projectile A prior to landing
Explanation:
Initial velocity = v
Angle at which the projectile is shot at = θ
g = Acceleration due to gravity
Range of a projectile is given by

When Initial velocity = v

When Initial velocity = 2v

Dividing the equtions, we get

Here, the angle at which the projectiles are fired at are equal.

Hence, projectile B will travel 4 times as far as projectile A prior to landing
Snell's law is defined as “The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant, for the light of a given colour and for the given pair of media”.
It's always a good idea to start with the definition of the thing you're trying to find.
This problem is just trying to find out whether you KNOW the definition of acceleration. You may know it, but you haven't used it yet.
Average acceleration = (change in velocity) divided by (total time).
Change in velocity = (end value) minus (start value)
Change in velocity = (20m/s) - 0
Change in velocity = 20 m/s
Time = 10 s
Average acceleration = (20m/s)/(10s)
Average acceleration = 2 m/s^2
Mass. Your mass does not change regardless of your location. Since mass is the measure of the amount of material in an object.
<span>Your answer will be 70,000 kgm/s</span>