1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hammer [34]
3 years ago
9

If you add 10 J of heat to a system so that the final temperature of the system is 200K, what is the change in entropy of the sy

stem? a)-0.05 J/K b)-0.30 J/k c)-1 J/K d)-9 J/K e)-2000 J/K
Engineering
1 answer:
Elden [556K]3 years ago
8 0

Answer:

0.05 J/K

Explanation:

Given data in question

heat (Q) = 10 J

temperature (T) = 200 K

to find out

the change in entropy of the system

Solution

we will solve this by the entropy change equation

i.e  ΔS = ΔQ/T           ...................1

put the value of heat Q and Temperature T in equation 1

ΔS is the enthalpy change and T is the temperature

so  ΔS = 10/200

ΔS = 0.05 J/K

You might be interested in
Find the mathematical equation for SF distribution and BM diagram for the beam shown in figure 1.​
Novosadov [1.4K]

Answer:

i) SF: v(x) = \frac{(w_0* x )^2}{2L}

ii) BM : = \frac{(w_0*x)^3}{6L}

Explanation:

Let's take,

\frac{y}{w_0} = \frac{x}{L}

Making y the subject of formula, we have :

y = \frac{x}{L} * w_0

For shear force (SF), we have:

This is the area of the diagram.

v(x) = \frac{1}{2} * y = \frac{1}{2} * \frac{x}{L} * w_0

= \frac{(w_0* x )^2}{2L}

The shear force equation =

v(x) = \frac{(w_0* x )^2}{2L}

For bending moment (BM):

BM = v(x) * \frac{x}{3}

= \frac{(w_0* x )^2}{2L}  * \frac{x}{3}

= \frac{(w_0*x)^3}{6L}

The bending moment equation =

= \frac{(w_0*x)^3}{6L}

5 0
4 years ago
What is flow energy? Do fluids at rest possess any flow energy?
anzhelika [568]

Answer:

Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.

Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.

8 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
3 years ago
What is the primary function of NCEES?
charle [14.2K]

Answer:

It is a non profit organization that dedicates to licensing professional engineers and surveyors

Explanation:

6 0
3 years ago
A cylindrical metal specimen of initial diameter d0 =14 mm, initial length L0=53 mm, strain hardening exponent n=0.31, strength
Marrrta [24]

Answer:

a) Ef = 0.755

b) length of specimen( Lf )= 72.26mm

  diameter at fracture = 9.598 mm

c) max load ( Fmax ) = 52223.24 N

d) Ft = 51874.67 N

Explanation:

a) Determine the true strain at maximum load and true strain at fracture

True strain at maximum load

Df = 9.598 mm

True strain at fracture

Ef = 0.755

b) determine the length of specimen at maximum load and diameter at fracture

Length of specimen at max load

Lf = 72.26 mm

Diameter at fracture

= 9.598 mm

c) Determine max load force

Fmax = 52223.24 N

d) Determine Load ( F ) on the specimen when a true strain et = 0.25 is applied during tension test

F = 51874.67 N

attached below is a detailed solution of the question above

3 0
3 years ago
Other questions:
  • A 356 cast aluminum test bar is tested in tension. The initial gage length as marked on the sample is 50mm and the initial diame
    9·1 answer
  • To 3 significant digits, what is the change of entropy of air in kJ/kgk if the pressure is decreased from 400 to 300 kPa and the
    15·1 answer
  • (Signal Property) Under what condition is a discrete-time signal x[????] or a continuous-time signal x(????) periodic? Determine
    5·1 answer
  • A strong base (caustic or alkali) is added to oils to test for: b. entrained air a)- alkalinity b)- acidity c)- contamination. d
    11·1 answer
  • How do the remains of plants and animals become fossil fuels. Why are they considered nonrenewable resources?
    13·1 answer
  • What is the difference between a series circuit and a parallel circuit?
    11·2 answers
  • Mark each one as either Potential or Kinetic Energy?
    11·1 answer
  • How to pass sharp edged tools to another student in welding
    11·1 answer
  • What is the purpose of encryption?
    13·1 answer
  • One of the best ways to increase engine power and control detonation and preignition is to?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!