Answer:
6.21 rad/s
1.3041 m/s, 0.567 m/s²

Explanation:
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration = 2.3 rad/s²
= Angle of rotation
t = Time taken = 2.3 s
Equation of rotational motion

The angular speed is 6.21 rad/s
Linear velocity is given by

Linear velocity is 1.3041 m/s
Tangential acceleration is given by

Tangential acceleration is 0.567 m/s²

In degress the angle would be

From x axis it would be

The angle is
from x axis
Answer:
Height is 11.25m
Explanation:
<u>Given the following data;</u>
Initial velocity, u = 0
Final velocity, v = 15m/s
Acceleration due to gravity, g = 10m/s²
To find the height, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement (height) measured in meters.
<em>Making S the subject, we have;</em>

But a = g = 10m/s²
<em>Substituting into the equation, we have;</em>

S = 11.25m
<em>Therefore, the ball will reach a height of 11.25m before it begins to fall. </em>
Answer:
The time taken for the race is 17.20 s.
Explanation:
It is given in the problem that a 62.0 kg sprinter starts a race with an acceleration of 1.44 meter per second square.The initial speed of the sprinter is zero as it starts from the rest.
Calculate the final speed of the sprinter.
The expression for the equation of the motion is as follows;

Here, u is the initial speed, v is the final speed, a is the acceleration and s is the distance.
Put u= 0, s=30 m and
.


Calculate time taken to cover 30 m distance.
The expression for the equation of motion is as follows;

Put u= 0, s=30 m and
.

t=6.45 s
Calculate the time taken to complete his race.
T= t+t'
Here, t is the time taken to cover 30 m distance and t' is the time taken to cover 100 m distance.

Put s= 30 m,
and s'= 100 m.

T= 17.20 s
Therefore, the time taken for the race is 17.20 s.
A)It moved 6 meters.
B)It would 3 meters.
I think this is the answer.
Have a good day.
when you solve an equation the quadratic of g(f) must be treated like any other mathematical quantity— they must be multiplied, divided, raised to powers, cancelled, etc in exactly the same way as the numbers to which they belong