Question:
The operations manager for a well-drilling company must recommend whether to build a new facility, expand his existing one, or do nothing. He estimates that long-run profits (in $000) will vary with the amount of precipitation (rainfall) as follows:
Alternative Precipitation
Low Normal High
Do nothing -100 100 300
Expand 350 500 200
Build new 750 300 0
If he feels the chances of low, normal, and high precipitation are 30 percent, 20 percent, and 50 percent respectively, What is EVPI (Expected value of Perfect Information)?
A. $140,000
B. $170,000
C. $285,000
D. $305,000
E. $475,000
Answer:
D. $170,000
Explanation:
The expected long run profits are for
Low Normal High
Do nothing -100*0.3 100*0.2 300*0.5 = 140
Expand 350*0.3 500*0.2 200*0.5 = 305
Build new 750*0.3 300*0.2 0*0.5 = 285
Therefore the expected long run profits are
$140,000
$305,000
$285,000
Based on his selected option being either to build new or to expand, the most profitable option is to expand
=$305,000
EVPI = EPPI-EMV =$170,000
Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
During upward projection the final velocity is zero, and the gravitational acceleration is -10 m/s² (against the gravity).
Therefore; using the equation;
S = 1/2gt² + ut
Where s is the height h, g is gravitational acceleration, and t is the time and u is the initial velocity u, is 16 ft/s.
Thus; h= 1/2(-10)t² + 16t
We get; h = -5t² + 16t
Therefore; the quadratic equation is 5t² - 16t + h =0
Answer:
The diode equation gives an expression for the current through a diode as a function of voltage.
Explanation:
Answer:
As much I know the gravity on moon is 1.62m/s२.