Answer:
a) 31.4 m/s
b) 50.2 m
Explanation:
a) When an object is free falling, its speed is determined by the gravity force giving it acceleration. Equation for the velocity of free fall started from the rest is:
v = g • t
g - is gravitational acceleration which is 9.81 m/s^2, sometimes rounded to 10
t - is the time of free fall
So:
v = 9.81 m/s^2 • 3.2
v = 31.4 m/s ( if g is rounded to 10, then the velocity is 10 • 3.2 = 32 m/s)
b) To determine the distance crossed in free fall we use the equation:
s = v0 + gt^2/2
v0 - is the starting velocity (since object started fall from rest, its v0 is 0)
s = gt^2/2
s = 9.81 m/s^2 • 3.2^2 / 2
s = 50.2 m (if we round g to 10 then the distance is 10 • 3.2^2/2 = 51.2 meters)
Answer:
The approximate spring constant is
Explanation:
From the question we are told that
The mass of the person is
The dip of the car is
Generally according to hooks law
here the force F is the weight of the person which is mathematically represented as
=>
=>
=>
=>
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>