Answer:
c)At a distance greater than r
Explanation:
For a satellite in orbit around the Earth, the gravitational force provides the centripetal force that keeps the satellite in motion:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance between the satellite and the Earth's centre
v is the speed of the satellite
Re-arranging the equation, we write

so we see from the equation that when the speed is higher, the distance from the Earth's centre is smaller, and when the speed is lower, the distance from the Earth's centre is larger.
Here, the second satellite orbit the Earth at a speed less than v: this means that its orbit will have a larger radius than the first satellite, so the correct answer is
c)At a distance greater than r
(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.
(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to

where

is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case

and so the cosine is zero, therefore the net flux is zero.
The correct option is this: SCIENTISTS HAVING DIFFERENT INTERESTS ARRIVE AT DIFFERENT CONCLUSIONS.
There are many fields in science and the scientists working in these fields have varying interests. The interests that a scientist has in a certain research will determines his views and conclusions about such a research.<span />
F= ma; a= F/m
a = 26.4 N/60 kg= 0.44 m/s^2