First we will use the concepts of motion kinetics for which the final speed is defined as shown below,

Here,
= Final velocity
= Initial velocity
a = Acceleration
s = Distance
Replacing,


Using the conservation of energy for kinetic energy we have,



Therefore the kinetic energy of the car is 31900J
Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N
Answer:
Given
mass (m) =2kg
velocity (v) =3m/s
momentum (p) =?
Form
p=mv
2kgx3m/s
p=6kg.m/s
the momentum of ball's =6kg.m/s
Answer:
A causes free electrons to flow
Explanation:
The amount of force that causes electrons to flow in a conductor is called electromotive force.
Answer:
D. the ability to exercise for longer periods of time
Explanation:
For example, when someone does endurance training, they are stretching their body's ability to do a certain exercise for longer times as opposed to increasing strength.