The momentum of two or more objects during collisions is not lost nor gained
Answer: The bug will remain motionless
Explanation:
According to Newton's first Law of Motion (sometimes called Law of Inertia):
<em>An object at rest or describing a uniform straight line motion (moving at constant velocity), will remain at rest or moving unless an external force is applied to it and changes its state of rest or motion.
</em>
In other words:
An object or body will keep its state of motion until an external force changes its state
This means that objects tend to remain in its state of motion, and is the definition of the inertia, as well.
In addition, according to his law, an object in rest can be in equilibrium (net force equals to zero), and a moving object can also be in equilibrium, as long as it keeps a constant velocity.
<h2>
This is why the bug, which is at rest will remain at rest, although the ants are simultaneously pulling it in different directions, since the resultant of all these forces is zero.</h2>
The order goes like this:
Radio, Micro waves, Infrared, Visible, UV (Ultra Violet), X-Ray, Gamma Ray.
When the child is moving, he/she has kinetic energy. For just a brief second before they move the other way, the child is not moving, but they have gravitational potential energy.
The child may need a push from time to time because friction with the air causes loss of energy.
If your speed changes from 10 km/h to 6 km/h then
you have an acceleration.
Whether it's a positive or negative one completely depends
on which direction you decided to call the positive direction,
when you started considering your speed and its changes.
If you decided to call the direction in which you're traveling
the positive direction, then a decrease in your speed is a
negative acceleration.
But you could just as easily have said that you're traveling
in the negative direction. If you did that, then a decrease in
your speed would be a positive acceleration.
It's completely up to you, and how you define things.