Answer:
The beam of light is moving at the peed of:
km/min
Given:
Distance from the isalnd, d = 3 km
No. of revolutions per minute, n = 4
Solution:
Angular velocity,
(1)
Now, in the right angle in the given fig.:

Now, differentiating both the sides w.r.t t:

Applying chain rule:


Now, using
and y = 1 in the above eqn, we get:

Also, using eqn (1),


Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
Answer:
1. Battery
2. Copper wire
3. Nail or piece of metal (zinc, iron, or steel).
Answer:
Explanation:
Suppose when bucket is half full it has a mass of 2 m rotating in a circle of radius r
When Bucket is quarter full then it has a mass of m rotating in a circle of radius r.
When an object moves in a circular path then it experiences an inward force which is given by

where v=velocity of bucket
Force in case 2 is given by

Thus
therefore force required in half bucket is more than force required in quarter bucket full.
Answer:
velocity shsjshsuud7dudhdudbe