Answer:
Most positive = rubidium
Most negative = fluorine
Explanation:
Electron affinity of an element is the energy released when an electron is attached to a neural atom to form an ion in its gaseous state.
X + e⁻ → X⁻
Electron affinity is similar to electronegativity which is the tendency at which an atom accepts an ion towards itself.
Electron affinity increases across the period and decreases down the group in the periodic table.
In the above option,
Fluorine has the highest electron affinity
Rubidium has the lowest electron affinity
Tellurium and then finally Phosphorus
Helium in this case would have the lowest electron affinity because it has filled orbital and does not require any electron to attain stability. Technically, Helium has the lowest or is expected to have the lowest electron affinity which is close to zero according to quantum mechanics.
Most positive = rubidium
Most negative = fluorine.
You can check periodic table for their exact values
Answer:
How many grams of H2O are in 1.0 mole of H2O?
18.02 grams
The average mass of one H2O molecule is 18.02 amu. The number of atoms is an exact number, the number of mole is an exact number; they do not affect the number of significant figures. The average mass of one mole of H2O is 18.02 grams.
#Yourchuu
Answer :]
to convert from g NaOH to mol NaOH. = 1.48 g NaOH are needed to neutralize the acid.
Explanation:
Balloon that an ocean diver takes to a pressure of 202 k Pa will get reduced in size that is the volume of the balloon will get reduced. This is because pressure and volume of the gas are inversely related to each other.
According to Boyle's law: The pressure of the gas is inversely proportional to the volume occupied by the gas at constant temperature(in Kelvins).
(At constant temperature)
The pressure beneath the sea is 202 kPa and the atmospheric pressure is 101.3 kPa . This increase in pressure will result in decrease in volume occupied by the gas inside the balloon with decrease in size of a balloon. Hence, the size of the balloon will get reduced at 202 kPa (under sea).