Answer:
6.7 seconds
Explanation:
d=(1/2)at^2
equation
1000=(1/2)45t^2.
substitute
2000=45t^2.
multiply by 2 for both sides
44.44=t^2.
divide both sides by 45
6.7=t
take the square root of both sides
Explanation:
Given that, a hiker walls 9.4 miles at an angle of 60 degrees south of west. We need to find the west and south components of the walk.
From the attached figure, it is clear that, the west component of the walk is given by :

The south component of the walk is given by :

So, the west and south components of the walk are 4.7 miles and 8.14 miles respectively. Hence, this is the required solution.
Answer:
The neutral wire is often confused with ground wire, but in reality, they serve two distinct purposes. Neutral wires carry currents back to power source to better control and regulate voltage. Its overall purpose is to serve as a path to return energy.
True, the wavelength dies down due to high frequency and low amptitude.
Answer:
A. False
B. False
C. True
D. True
E. True
F. True
Explanation:
A. The equation Ax=b is referred to as a matrix equation and not vector equation.
B. If the augmented matrix [ A b ] has a pivot position in every row then equation Ax=b may or may not be consistent. It is inconsistent if [A b] has a pivot in the last column b and it is consistent if the matrix A has a pivot in every row.
C. In the product of Ax also called the dot product the first entry is a sum of products. For example the the product of Ax where A has [a11 a12 a13] in the first entry of each column and the corresponding entries in x are [x1 x2 x3] then the first entry in the product is the sum of products i.e. a11x1 + a12x2 +a13x3
D. If the columns of mxn matrix A span R^m, this states that every possible vector b in R^m is a linear combination of the columns which makes the equation consistent. So the equation Ax=b has at least one solution for each b in R^m.
E. It is stated that a vector equation x1a1 + x2a2 + x3a3 + ... + xnan = b has the same solution set as that of the linear system with augmented matrix [a1 a2 ... an b]. So the solution set of linear system whose augmented matrix is [a1 a2 a3 b] is the same as solution set of Ax=b if A=[a1 a2 a3] and b can be produced by linear combination of a1 a2 a3 iff the solution of linear system corresponding to [a1 a2 a3 b] takes place.
F. It is true because lets say b is a vector in R^m which is not in the span of the columns. b cannot be obtained for some x which belongs to R^m as b = Ax. So Ax=b is inconsistent for some b in R^m and has no solution.