Answer:
Explanation:
Force on a moving charge is given by the following relation
F = q ( v x B )
for proton
q = e , v = vi , B = Bk
F = e ( vi x Bk )
= Bev - j
= - Bevj
The direction of force is along negative of y axis or -y - axis.
for electron
q = - e , v = vi , B = Bk
F = - e ( vi x Bk )
= - Bev - j
= Bevj
The direction of force is along positive of y axis or + y - axis.
Answer:
The answer to your question is: 13.2 m/s
Explanation:
final speed (fs) = 77 m/s
t = 6.5 s
gravity (g) = 9.81 m/s2
initial speed (is) = ?
Formula
fs = is + gt from this equation we clear "is" = fs - gt
Substitution is = 77 - (9,81)(6.5)
Process is = 77 - 63.8
is = 13.2 m/s
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
The increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Kinetic energy of a particle is directly proportional to its temperature.
A ball initially at rest acquires kinetic energy when an external force is applied to it. As the person strikes the ball with a bat, the ball gains momentum which increases its kinetic energy of the ball.
Temperature on the other hand, is the measure of the average kinetic energy of a particle. Consequently, as the kinetic energy of the ball increases, the temperature of the ball increases as well.
Thus, we can conclude that the increase in the average kinetic energy of the ball causes the increase in the temperature of the ball.
Learn more here: brainly.com/question/18833622
The answer is "156.6 m/s".
This is how we calculate this;
-N + mg = ma = mv²/r
For "weightlessness" N = 0, so
0 = mg - mv²/r
g - v²/r = 0
v =√( gr)
g = 9.8 and r = 2.5km = 2500 m
v = √(9.8 x 2500)
= 156.6 m/s