Answer:

Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.

Answer:
C
Explanation:
okay, you need to look at the structures of the particles of matter in the solid, liquid and gas.
- particles in a solid are in fixed positions, where they can only vibrate in those positions ( take a look at ice, or rather, a brick)
- liquids have very small or rather, no spaces between them, but they can slide or rub against each other, like people in a <em>really tight</em> crowd I guess
- gas particles have very large spaces between them and they move randomly. these exibit what's called brownian motion.
- since water particles (and all other liquid particles) have negligible spacings and limited movement, that allows the dye particles to move from a region of high concentration to that of a low concentration. the aim for this is for the mixture/solution to reach an equilibrium, that is the mixture must get to a point where all regions have the same concentration of the dye.
you can refer to your coursebooks :)
correct where wrong please:)
Answer:
4 moles of H₃PO₄
Explanation:
The reaction expression is given as;
3KOH + H₃PO₄ → K₃PO₄ + 3H₂O
Number of moles of water = 12moles
Unknown:
Number of moles of H₃PO₄ = ?
Solution:
From the balanced reaction expression we see that;
3 moles of water is produced from 1 mole of H₃PO₄
So; 12 moles of water would be produced from
= 4 moles of H₃PO₄
Answer is: the number of ions produced in the dissociation of aluminium fluoride is 4.
<span>
Chemical dissociation of aluminium fluoride in
water:
AlF</span>₃(aq) →
Al³⁺(aq) + 3F⁻(aq).<span>
There are four ions, one aluminium cation and
three fluoride anions.
Aluminium has oxidation +3, because it lost
three electrons, to have electron configuration as noble gas neon and fluorine has oxidation -1, because it gain one electron to </span>have electron configuration as noble gas neon.