Answer:
(a) The value of C is 1.
(b) In 2010, the population would be 1.07555 billions.
(c) In 2047, the population would be 1.4 billions.
Step-by-step explanation:
(a) Here, the given function that shows the population(in billions) of the country in year x,
![P(x)=Ca^{x-2000}](https://tex.z-dn.net/?f=P%28x%29%3DCa%5E%7Bx-2000%7D)
So, the population in 2000,
![P(2000)=Ca^{2000-2000}](https://tex.z-dn.net/?f=P%282000%29%3DCa%5E%7B2000-2000%7D)
![=Ca^{0}](https://tex.z-dn.net/?f=%3DCa%5E%7B0%7D)
![=C](https://tex.z-dn.net/?f=%3DC)
According to the question,
![P(2000)=1](https://tex.z-dn.net/?f=P%282000%29%3D1)
![\implies C=1](https://tex.z-dn.net/?f=%5Cimplies%20C%3D1)
(b) Similarly,
The population in 2025,
![P(2025)=Ca^{2025-2000}](https://tex.z-dn.net/?f=P%282025%29%3DCa%5E%7B2025-2000%7D)
![=Ca^{25}](https://tex.z-dn.net/?f=%3DCa%5E%7B25%7D)
(∵ C = 1)
Again according to the question,
![P(2025)=1.2](https://tex.z-dn.net/?f=P%282025%29%3D1.2)
![a^{25}=1.2](https://tex.z-dn.net/?f=a%5E%7B25%7D%3D1.2)
Taking ln both sides,
![\ln a^{25}=\ln 1.2](https://tex.z-dn.net/?f=%5Cln%20a%5E%7B25%7D%3D%5Cln%201.2)
![25\ln a = \ln 1.2](https://tex.z-dn.net/?f=25%5Cln%20a%20%3D%20%5Cln%201.2)
![\ln a = \frac{\ln 1.2}{25}\approx 0.00729](https://tex.z-dn.net/?f=%5Cln%20a%20%3D%20%5Cfrac%7B%5Cln%201.2%7D%7B25%7D%5Capprox%200.00729)
![a=e^{0.00729}=1.00731](https://tex.z-dn.net/?f=a%3De%5E%7B0.00729%7D%3D1.00731)
Thus, the function that shows the population in year x,
...... (1)
The population in 2010,
Hence, the population in 2010 would be 1.07555 billions.
(c) If population P(x) = 1.4 billion,
Then, from equation (1),
![1.4=(1.00731)^{x-2000}](https://tex.z-dn.net/?f=1.4%3D%281.00731%29%5E%7Bx-2000%7D)
![\ln 1.4=(x-2000)\ln 1.00731](https://tex.z-dn.net/?f=%5Cln%201.4%3D%28x-2000%29%5Cln%201.00731)
![0.33647 = (x-2000)0.00728](https://tex.z-dn.net/?f=0.33647%20%3D%20%28x-2000%290.00728)
![0.33647 = 0.00728x-14.56682](https://tex.z-dn.net/?f=0.33647%20%3D%200.00728x-14.56682)
![0.33647 + 14.56682 = 0.00728x](https://tex.z-dn.net/?f=0.33647%20%2B%2014.56682%20%3D%200.00728x)
![14.90329 = 0.00728x](https://tex.z-dn.net/?f=14.90329%20%3D%200.00728x)
![\implies x=\frac{14.90329}{0.00728}\approx 2047](https://tex.z-dn.net/?f=%5Cimplies%20x%3D%5Cfrac%7B14.90329%7D%7B0.00728%7D%5Capprox%202047)
Therefore, the country's population might reach 1.4 billion in 2047.