We are going to use Henry's law:
when C1/P1 = C2/P2
at a constant temperature.
and when the C1 and C2 are the concentration of the gases ( the solubility)
and P1 and P2 is the Pressure 1 and pressure 2
and when 760 mmHg = 1 atm
so, by substitution:
1.6 g/L / 1 atm = C2 /2.5 atm
∴C2 = 1.6g/L *2.5atm /1 atm
= 4 g/L
The chemical symbol for gold is AU
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:

We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:

= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Answer:
![r=-k[H_2][O_2]^{1/2}](https://tex.z-dn.net/?f=r%3D-k%5BH_2%5D%5BO_2%5D%5E%7B1%2F2%7D)
Explanation:
Hello!
In this case, according to the chemical reaction:
H2 + 1/2 O2 --> H2O
Since both hydrogen and oxygen are the reactants and the rate laws are written in terms of the concentration of reactants and the rate constant, we obtain:
![r=-k[H_2][O_2]^{1/2}](https://tex.z-dn.net/?f=r%3D-k%5BH_2%5D%5BO_2%5D%5E%7B1%2F2%7D)
Whereas the negative sign represents the consumption of those reactants and the power 1/2 the stoichiometric coefficient of oxygen in the reaction.
Best regards!
Ultraviolet rays has the most energy