Based on the assumption that the reaction involves N and O to produce NO, if 25.0 g of NO are produced, the amount of N gas used would be 11.66 grams
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
N + O ---------> NO
Mole ratio of N to NO is 1:1
Mole of 25.0 g of NO = 25/30.01 = 0.833 moles
Equivalent mole of N = 0.833 moles
Mass of 0.833 moles N = 0.833 x 14 = 11.66 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C
Single bonds are those that bond with one atom, and sigma bonds are the strongest type of covalent bonds that are single bonded.
That means NO, not all single bonds are sigma bond, but all sigma bonds are single bonds.
Metathesis is a type of reaction in which the cations and anions exchange partners. this reaction is also called double replacement. Metathesis reactions are driven by the formation of a product .this reaction is classified into three different categories: formation of precipitate, f<span>ormation of a Weak or Non-electrolyte and production of the gas.</span>