Answer: The range of wavelengths of light that can be used to cause given phenomenon is
.
Explanation:
Given: 222 kJ/mol (1 kJ = 1000 J) = 222000 J
Formula used is as follows.

where,
E = energy
h = Planck's constant = 
c = speed of light = 
Substitute the values into above formula as follows.

Thus, we can conclude that the range of wavelengths of light that can be used to cause given phenomenon is
.
According to the reversible reaction equation:
2Hi(g) ↔ H2(g) + i2(g)
and when Keq is the concentration of the products / the concentration of the reactants.
Keq = [H2][i2]/[Hi]^2
when we have Keq = 1.67 x 10^-2
[H2] = 2.44 x 10^-3
[i2] = 7.18 x 10^-5
so, by substitution:
1.67 x 10^-2 = (2.44 x 10^-3)*(7.18x10^-5)/[Hi]^2
∴[Hi] = 0.0033 M
Answer:
0.295 L
Explanation:
It seems your question lacks the final concentration value. But an internet search tells me this might be the complete question:
" A chemist must dilute 47.2 mL of 150. mM aqueous sodium nitrate solution until the concentration falls to 24.0 mM. He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Be sure your answer has the correct number of significant digits. "
Keep in mind that if your value is different, the answer will be different as well. However the methodology will remain the same.
To solve this problem we can<u> use the formula</u> C₁V₁=C₂V₂
Where the subscript 1 refers to the concentrated solution and the subscript 2 to the diluted one.
- 47.2 mL * 150 mM = 24.0 mM * V₂
And <u>converting into L </u>becomes:
- 295 mL *
= 0.295 L
The substances which allow the current to flow in the circuit are:
Lithium bromide in a solution and Graphite.
Lithium bromide can be pass the current in the circuit, due to the ability to form ions in the solution Li⁺ and Br⁻ which are mobile and can transport the electrical charge.
In the graphite because of the presence of delocalised electrons, each carbon atom forms three covalent bonds with three other carbon atoms, it conducts electrical current.
In the case of potassium chloride lattice there are in a solid form and the atoms are not mobile so they can not form ions. In the diamond all the carbon valences are satisfied so the electrical charge can not be transported.
Nitric oxide in a solution is isolated and can not transport the electrical current due to its inability of the to form ions
.
Explanation:
Claim, Evidence, Reasoning (CER) model, an explanation consists of: A claim that answers the question. Evidence from students' data. Reasoning that involves a rule or scientific principle that describes why the evidence supports the claim.