Answer:
Oracio is the most cost-effective choice because he would cost the least to complete the project. However, he would also take the longest amount of time. Camilla could complete the job the fastest, but she costs more than Oracio. SciTech will have to decide if it is more important to save money or complete the work quickly to meet the deadline.
Hope this helps :)
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
Earth's protective magnetic bubble, called the magnetosphere, deflects most solar particles, but in the absence of atmospheric layer, Polyethylene is a good shielding material because it has high hydrogen content, and hydrogen atoms are good at absorbing and dispersing radiation.
The Earth’s atmospheres are kept in place by gravity. The air near the ground is pulled on by gravity and compressed by the air higher in the sky. This causes the air near the ground to be denser and creating different layers with different qualities in which are the atmosphere.
Hope that helps ^^
Answer:
ω = 630.2663 = 630[rad/s]
Explanation:
Solution:
- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.
1rev(20 hole) -> 20(cycle)/rev
2006.2(cycle) -> f ?
f = 2006.2/20 = 100.31rev at second
- The relation between angular frequency and angular speed is given by:
ω = 2πf
ω = 2*3.14*100.31
ω = 630.2663 = 630[rad/s]