Explanation:
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration
Answer:
The center of mass of three mass in the x-y plane is located at (1,0.5).
Explanation:
It is given that, a mass of 6 kg is at (0,0), a mass of 4 kg is at (3,0), and a mass of 2 kg is at (0,3). We need to find the center of mass of the system. Center of mass in x direction is :

The center of mass in y direction is :

So, the center of mass of three mass in the x-y plane is located at (1,0.5).
Answer:
92.81 psia.
Explanation:
The density of water by multiplying its specific gravity by the density of sea water.
SG = density of sea water/density of water
ρ = SG x ρw
1 kg/m3 = 62.4 lbm/ft^3
= 1.03 * 62.4
= 64.27lbm/ft^3.
The absolute pressure at 175 ft below sea level as this is the location of the submarine.
P = Patm +ρgh
= 14.7 + 64.27 * 32.2 * 175
Converting to pound force square inch,
= 14.7 + 64.27 * (32.2ft/s^2) * (175ft) * (1lbf/32.2lbm⋅ft/s^2) * (1ft^2/144in^2 )
= 14.7 + 78.11 psia
= 92.81 psia.
Given:
v = 50.0 m/s, the launch velocity
θ = 36.9°, the launch angle above the horizontal
Assume g = 9.8 m/s² and ignore air resistance.
The vertical component of the launch velocity is
Vy = (50 m/s)*sin(50°) = 30.02 m/s
The time, t, to reach maximum height is given by
(30.02 m/s) - (9.8 m/s²)*(t s) = 0
t = 3.0634 s
The time fo flight is 2*t = 6.1268 s
The horizontal velocity is
u = (50 m/s)cos(36.9°) = 39.9842 m/s
The horizontal distance traveled at time t is given in the table below.
Answer:
t, s x, m
------ --------
0 0
1 39.98
2 79.79
3 112.68
4 159.58
5 199.47
6 239.37