Answer:
Part(a): The value of the spring constant is
.
Part(b): The work done by the variable force that stretches the collagen is
.
Explanation:
Part(a):
If '
' be the force constant and if due the application of a force '
' on the collagen '
' be it's increase in length, then from Hook's law

Also, Young's modulus of a material is given by

where '
' is the area of the material and '
' is the length.
Comparing equation (
) and (
) we can write

Here, we have to consider only the circular surface of the collagen as force is applied only perpendicular to this surface.
Substituting the given values in equation (
), we have

Part(b):
We know the amount of work done (
) on the collagen is stored as a potential energy (
) within it. Now, the amount of work done by the variable force that stretches the collagen can be written as

Substituting all the values, we can write

Answer:
Explanation:
Initially no of atoms of A = N₀(A)
Initially no of atoms of B = N₀(B)
5 X N₀(A) = N₀(B)
N = N₀ 
N is no of atoms after time t , λ is decay constant and t is time .
For A
N(A) = N(A)₀ 
For B
N(B) = N(B)₀ 
N(A) = N(B) , for t = 2 h
N(A)₀
= N(B)₀ 
N(A)₀
= 5 x N₀(A) 
= 5 
= 5 
half life = .693 / λ
For A
.77 = .693 / λ₁
λ₁ = .9 h⁻¹
= 5 
Putting t = 2 h , λ₁ = .9 h⁻¹
= 5 
= 30.25
2 x λ₂ = 3.41
λ₂ = 1.7047
Half life of B = .693 / 1.7047
= .4065 hours .
= .41 hours .
Answer:
1 μC extra charge will be flow here
Explanation:
Given data
battery V1 = 4.0 V
flows Q1 = 6.0 μC
replace battery V2 = 7.0 V
to find out
what happen if we replace battery
solution
we apply here principal of capacitor
that is Q directly proportional voltage
so we say Q2/Q1 = V2/ V1
put all value here
Q2/Q1 = V2/ V1
Q2/6 = 7/ 6
Q2 = 7
so we see here 7 μC will be flow
and Q = Q2 - Q1 = 7 - 6 = 1 μC
so we also say that 1 μC extra charge will be flow here
the answer is true because evaporates can provide an ideal speed racing surface
Answer: b. The combination is a mixture because the substances can be separated
Explanation: Based on the facts presented above, the combination of both both substances can be referred to as a mixture due to the following:
A mixture is obtained when two or more substances or materials are combined without a chemical reaction. This is observed when Jalen combined substance 1 and 2 with only one of the substances becoming visible after the combination.
The other reason is that, a mixture can be separated back into its original constituent, this is evident when the combination was filtered with only substance 2 going through the filter and substance 1 remaining in the filter