Explanation:
Carbohydrates covalently linked to proteins (glycoproteins) or lipids (glycolipids) are also a part of cell membranes, and function as adhesion and address loci for cells. The Fluid Mosaic Model describes membranes as a fluid lipid bilayer with floating proteins and carbohydrates.
2) Increasing the rate of the reverse reaction will cause a shift to the left.
Hopefully, If it is wrong my full apologies.
OR IF THATS WRONG, TRY THIS
a - Increasing the rate of the forward reaction will cause equilibrium to be more product-favored (i.e. shift to the right, not the left)
The Second Law of Thermodynamics<span> says that processes that involve the transfer or conversion of heat energy are irreversible.</span><span> ... The First </span>Law of Thermodynamics<span> states that energy cannot be created or destroyed; the total quantity of energy in the universe stays the same.</span>
Answer:
The answer to your question is SO₂ + 3H₂ ⇒ H₂S + 2H₂O
Explanation:
Reaction
SO₂ + H₂ ⇒ H₂S + H₂O
Reactants Elements Products
1 Sulfur 1
2 Hydrogen 4
2 Oxygen 1
This reaction is unbalanced so we need to balance it.
SO₂ + 3H₂ ⇒ H₂S + 2H₂O
Reactants Elements Products
1 Sulfur 1
6 Hydrogen 6
2 Oxygen 2
Now, the reaction is balanced
We can calculate for temperature by assuming the equation
for ideal gas law:
P V = n R T
Where,
P = pressure = 1.80 atm
V = volume = 18.2 L
n = number of moles = 1.20 moles
R = gas constant = 0.08205746 L atm / mol K
Substituting to the given equation:
T = P V / n R
T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm /
mol K)
T = 332.70 K
We can convert K unit to ˚C unit by subtracting 273.15
to Kelvin, therefore
T = 59.55 ˚<span>C</span>