Answer:
Cp = 4756 [J/kg*°C]
Explanation:
In order to calculate the specific heat of water, we must use the equation of energy for heat or heat transfer equation.
Q = m*Cp*(T_f - T_i)/t
where:
Q = heat transfer = 2.6 [kW] = 2600[W]
m = mass of the water = 0.8 [kg]
Cp = specific heat of water [J/kg*°C]
T_f = final temperature of the water = 100 [°C]
T_i = initial temperature of the water = 18 [°C]
t = time = 120 [s]
Now clearing the Cp, we have:
Cp = Q*t/(m*(T_f - T_i))
Now replacing
Cp = (2600*120)/(0.8*(100-18))
Cp = 4756 [J/kg*°C]
C. The membrane is inside the cell wall. The cell wall surrounds the membrane.
Answer:
The magnitude of electrostatic force on each charge is quarter of the magnitude of initial electrostatic force. ( ¹/₄ F)
Explanation:
The electrostatic force between two charges is given by Coulomb's law;

where;
Q₁ and Q₂ are the magnitude of the charges
r is the distance between the charges
k is Coulomb's constant
Since the charges are identical;
Q₁ = Q
Q₂ = Q
the electrostatic force experienced by each charge is given by;

When each of the spheres has lost half of its initial charge;
Q₁ = Q/2
Q₂ = Q/2

Therefore, the magnitude of electrostatic force on each charge is quarter of the magnitude of initial electrostatic force.
Answer:
<h2>
2.8×10^-3</h2>

<u>0.0028125N</u><u> </u>