These forces form a force pair. Use Newton's third law, and you see that the trailer pulls back at with the same force. The answer is d.
Answer:
t = 4.17 hours
Explanation:
given,
The distance between Sun and Neptune, d = 4.5 billion Km
= 4.5 x 10⁹ Km
= 4.5 x 10¹¹ m
The velocity of light, c = 3 x 10⁸ m/s
The velocity is always equal to displacement by the time.
<em>V = d / t m/s</em>
∴ t = d / V
= 4.5 x 10¹¹ m / 3 x 10⁸ m/s
= 15,000 s
= 4.17 h
Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h
Answer:
a) [volts] = [N m / C],
b) The lines or surface that has the same potential are called equipotential
c) the equipotential lines must also be perpendicular to the electric field lines
Explanation:
a) find the units of the volt
the electric potential energy is
V = k q / r
V = [N m² / C²] C / m
V = [N m / C]
The electric potential is defined as
V = E .s
V = [N / C] [m]
V = [N m / C] = [volt]
we see that in the two expressions the same result is obtained therefore the volt is
[volts] = [N m / C]
b) The lines or surface that has the same potential are called equipotential surfaces, the great utility of these lines or surfaces is that a face can be displaced on it without doing work.
c) The electric potential is defined as the gradient of the electric field
v =
therefore the equipotential lines must also be perpendicular to the electric field lines
Answer:
It is very rare to see a solar eclipse from your home, because the Earth, Sun, and the moon need to align just right. Not everyone in the world can view a solar eclipse, only some area can. A solar eclipse is where the moon blocks out the sun. If you think about it: Let's say you live in Florida, U.S.A. You may see the moon coming in front of the sun, but if you lived in California or sumthin', the moon and the sun wouldn't be aligned to form a solar eclipse. It all depends on location... so it is rare to see one.
250 m. for a longer explanation or solution look at this article, i’m sorry.
https://www.quora.com/A-projectile-is-thrown-so-it-travels-a-maximum-range-of-1000m-How-high-will-it-rise