We will use the formula / equation to determined the time.
Distance = ½ * (vi + vf) * t
48100 = ½ * (26.3 + 41.9) * t
t = 48100 ÷ 34.1 = 1410.557185 seconds
We will use the formula / equation to determined the acceleration.
vf = vi + a * t
41.9 = 26.3 + a * 1410.557185
a = (41.9 – 26.3) ÷ 1410.557185 = 0.011059459 m/s^2
We will use the formula / equation to determined the acceleration.
vf^2 = vi^2 + 2 * a * d
41.9^1 = 26.3^2 + 2 * a * 48100
a = (41.9^2 – 26.3^2) ÷ 96200 = 0. 011059459 m/s^2
Since both answers are the same, I believe the acceleration is correct.
Stressing an equilibrium simply means that the physical properties in which already exists are balanced. Stress can be applied by either changing the pressure or the volume or temperature.
Answer:
D
Explanation:
D. A swing moving back and forth