1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
3 years ago
15

A river has a steady speed of 0.500 m/s. a student swims upstream a distance of 1.00 km and swims back to the starting point. (a

) if the student can swim at a speed of 1.20 m/s in still water, how long does the trip take? (b) how much time is required in still water for the same length swim? (c) intuitively, why does the swim take lon- ger when there is a current?
Physics
1 answer:
Varvara68 [4.7K]3 years ago
3 0
A. Upstream refers to the motion of the swimmer where he is against the current. The resultant speed of the swimmer is equal to the difference of the velocity or speed in still water and that of the river. The time it requires to cover the distance is calculated through the equation,
               t = d / s
where t is time, d is distance, and s is speed. Substituting the known values,
             t = 1000 m / (1.2 m/s - 0.5 m/s) = 1,428.57 seconds

(b) The time it requires for the swimmer to swim in still water,
            t = 1000 m / (1.2 m/s) = 833.33 seconds

(c) Intuitively, it takes longer to cover the distance when there is current because the current will serve as resistance to the motion of the swimmer, partially moving it backwards instead of forward. 


You might be interested in
What constant acceleration, in SI units, must a car have to go from zero to 60 mph in 10 s? How far has the car traveled when it
nalin [4]

Answer:

Explanation:

initial velocity, u = 0

final velocity, v = 60 mph = 26.8 m/s

time t = 10 s

Let a be the acceleration and s be he distance traveled.

Use first equation of motion

v = u + a t

26.8 = 0 +  a x 10

a = 2.68 m/s

Use second equation of motion

s = ut + 1/2 at²

s = 0 + 0.5 x 2.68 x 10 x 10

s = 134 m

As, 1 m = 3.28 ft

So, s = 134 x 3.28 ft

s = 439.6 ft

7 0
3 years ago
HELP WITH THIS QUESTION PLEASE!<br><br> What Factors Affect Climate?
harkovskaia [24]
Latitude, elevation, ocean currents, topography, and prevailing winds. There's probably a few others but these are the most important.
5 0
3 years ago
Read 2 more answers
Which artist of the northern European Renaissance, shown in this self-portrait, was also a block printer and engraver?
kicyunya [14]
It's very hard to see the self-portrait, so I can't identify him.
6 0
3 years ago
Read 2 more answers
Consider the hydrogen atom. How does the energy difference between adjacent orbit radii change as the principal quantum number i
Kisachek [45]

Answer:

the energy difference between adjacent levels decreases as the quantum number increases

Explanation:

The energy levels of the hydrogen atom are given by the following formula:

E=-E_0 \frac{1}{n^2}

where

E_0 = 13.6 eV is a constant

n is the level number

We can write therefore the energy difference between adjacent levels as

\Delta E=-13.6 eV (\frac{1}{n^2}-\frac{1}{(n+1)^2})

We see that this difference decreases as the level number (n) increases. For example, the difference between the levels n=1 and n=2 is

\Delta E=-13.6 eV(\frac{1}{1^2}-\frac{1}{2^2})=-13.6 eV(1-\frac{1}{4})=-13.6 eV(\frac{3}{4})=-10.2 eV

While the difference between the levels n=2 and n=3 is

\Delta E=-13.6 eV(\frac{1}{2^2}-\frac{1}{3^2})=-13.6 eV(\frac{1}{4}-\frac{1}{9})=-13.6 eV(\frac{5}{36})=-1.9 eV

And so on.

So, the energy difference between adjacent levels decreases as the quantum number increases.

5 0
3 years ago
Explain how to find the angle between two nonzero vectors. Choose the correct answer below. A. The angle between two nonzero vec
kozerog [31]

Answer:

θ = Cos⁻¹[A.B/|A||B|]

A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result

Explanation:

We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:

A.B = |A||B| Cosθ

where,

A = 1st Non-Zero Vector

B = 2nd Non-Zero Vector

|A| = Magnitude of Vector A

|B| = Magnitude of Vector B

θ = Angle between vector A and B

Therefore,

Cos θ = A.B/|A||B|

<u>θ = Cos⁻¹[A.B/|A||B|]</u>

Hence, the correct answer will be:

<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>

3 0
2 years ago
Other questions:
  • Firecrackers A and B are 600 m apart. You are standing exactly halfway between them. Your lab partner is 300 m on the other side
    8·1 answer
  • If you are seeing a solar eclipse but you are not located in the umbra of the moon, what might you see in the sky?
    15·1 answer
  • A tightly sealed glass jar is an example of which type of system?
    15·2 answers
  • what kind of image is formed when the image distance is positive? what kind of image is formed when the image distance is negati
    5·2 answers
  • G problem 2.68 determine the magnitude of the resultant force.
    7·1 answer
  • An object is placed 11.0 cm in front of a concave mirror whose focal length is 24.0 cm. The object is 2.60 cm tall. What is the
    10·1 answer
  • Which kind of pressure prevents stars of extremely large mass from forming?
    15·2 answers
  • A student is gliding along on a scooter at a comfortable 2.8 m/s when Mr. Jones walks around the corner and the two collide. If
    15·1 answer
  • In an electric motor, a commutator
    15·2 answers
  • 3. Una cuerda de guitarra tiene 60 cm de longitud y una masa de 0.05 kg de masa. Si se tensiona mediante una fuerza de 20 N. La
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!