1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
2 years ago
6

A train, traveling at a constant speed of 22.0 m/s, comes to an incline with a constant slope. While going up the incline, the t

rain slows down with a constant acceleration of magnitude 1.40 m/s2. How far has the train traveled up the incline after 7.30 s
Physics
2 answers:
Alexus [3.1K]2 years ago
6 0

Answer:

123.297 m

Explanation:

A train, traveling at a constant speed of 22.0 m/s,

v = 22.0 m/s

the train slows down with a constant acceleration of magnitude 1.40 m/s².

a_s = -1.4 m/s²

How far has the train traveled up the incline after 7.30 s

t =7.30 s

We can calculate the distance traveled up the incline after 7.30 s by using the formula:

x_f =x_i+v_xt+\frac{1}{2}a_st^2

where;

x_f = the distance traveled up

x_i = 0

v_x = speed of the train

a_s = deceleration

t = time

Substituting our data; we have:

x_f = 0+(22m/s)(7.30s)+\frac{1}{2}(-1.4m/s^2)(7.30s)

x_f =16.06 -37.303

x_f = 123.297 m

Charra [1.4K]2 years ago
4 0

Answer:

123.30 m

Explanation:

Given

Speed, u = 22 m/s

acceleration, a = 1.40 m/s²

time, t = 7.30 s

From equation of motion,

                       v = u + at

where,

v is the final velocity

u is the initial velocity

a is the acceleration

t is time  

                       V = at + U

using equation  v - u = at to get line equation for the graph of the motion of the train on the incline plane

                       V_{x} = mt + V_{o}      where m is the slope

Comparing equation (1) and (2)

V = V_{x}

a = m    

U = V_{o}

Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.

          a = -  1.40 m/s²

Sunstituting a = -  1.40 m/s² and  u = 22 m/s

                        V_{x} = -1.40t + 22

                            V_{x} = -1.40(7.30) + 22

                             V_{x} = -10.22 + 22

                             V_{x} = 11. 78 m/s

The speed of the train at 7.30 s is 11.78 m/s.

The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.

           Area of triangle +  Area of rectangle

          [\frac{1}{2} * (22 - 11.78) * (7.30)]  + [(11.78 - 0) * (7.30)]

                           = 37.303 + 85.994

                           = 123. 297 m

                           ≈ 123. 30 m

                 

You might be interested in
Resonance structures have _______ connectivity of atoms and _______ distribution of electrons.
Arte-miy333 [17]

Answer:

Resonance structures have <u> </u><u>same</u><u>  </u>  connectivity of atoms and <u> differ only in</u> distribution of electrons.

Explanation:

Atoms supply the electrons from their outer electron shells. Electrons are found free in nature and are grouped around the nucleus into shells. Electrons can be further explained as negatively charged subatomic particle. Electrons have properties of both particles and waves and they can be moved around.

Resonance structures are imaginary structures and not all of them are created equally. Resonance structures have two or more possible electron structures, and, the resonance structures for a particular substance sometimes have different energy and stability. When resonance structures are identical, they are important descriptions  of the molecule. The position of the atoms is the same in the various resonance structures of a compound, but the electrons are distributed differently around the structure.

3 0
3 years ago
The Mars Curiosity rover was required to land on the surface of Mars with a velocity of 1 m/s. Given the mass of the landing veh
Aliun [14]

Answer:

The value is      A   = 39315 \  m^2

Explanation:

From the question we are told that

    The velocity which the rover is suppose to land with is  v  =  1 \ m/s

    The  mass of the rover and the parachute is  m  =  2270 \ kg

     The  drag coefficient is  C__{D}}  =  0.5

      The atmospheric density of Earth  is  \rho =  1.2 \  kg/m^3

     The acceleration due to gravity in Mars is  g_m  =  3.689 \  m/s^2

     

Generally the Mars  atmosphere density is mathematically represented as

          \rho_m  =  0.71 *  \rho

=>        \rho_m  =  0.71 *  1.2

=>        \rho_m  = 0.852 \  kg/m^3

Generally the drag force on the rover and the parachute  is mathematically represented as

          F__{D}} =  m  *  g_{m}

=>       F__{D}} =  2270   *  3.689  

=>       F__{D}} =  8374 \ N  

Gnerally this drag force is mathematically represented as

         F__{D}} =   C__{D}} *  A *  \frac{\rho_m * v^2 }{2}

Here A is the frontal area

So  

         A   =  \frac{2 *  F__D }{ C__D}  *  \rho_m  * v^2   }

=>       A   =  \frac{2 * 8374 }{ 0.5 *  0.852    *  1 ^2   }

=>       A   = 39315 \  m^2

8 0
3 years ago
Most asteroids lie between the orbits of
Anika [276]
I believe the answer is B. that's where the asetroid belt is.
4 0
2 years ago
Read 2 more answers
Which organism makes its own food? A mouse B snake C grass D owl
bearhunter [10]
Your answer will be C: grass

NOT A, because a mouse would eat seeds, grass, etc
NOT B, because a snake is a carnivore
NOT D, because a owl is also a carnivore
6 0
3 years ago
Read 2 more answers
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • Air compressed in car engine from 25 C and 100 kPa in reversible and adiabatic manner. If the compression ratio = 9.058, determi
    5·1 answer
  • An object floats on water with 80% of its volume below the surface. the same object when placed in another liquid floats on that
    5·1 answer
  • Kelly sits on a rock. Her weight is an action force. Describe the reaction force.
    12·2 answers
  • Nancy rides her bike with a constant
    15·1 answer
  • Arrange the following substances in order of decreasing magnitude of lattice energy. Rank the compounds in order of decreasing m
    13·2 answers
  • What is the definition for Astrology?
    15·1 answer
  • Protons and ____ have electric charge?
    5·2 answers
  • Please help with this
    15·1 answer
  • How does the medium which a sound wave travels, affect a sound
    9·1 answer
  • A ball of clay is moving at a speed of 12 m/s collides and sticks to a stationary ball of clay. If each ball has a mass of 13 kg
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!