1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
3 years ago
6

A train, traveling at a constant speed of 22.0 m/s, comes to an incline with a constant slope. While going up the incline, the t

rain slows down with a constant acceleration of magnitude 1.40 m/s2. How far has the train traveled up the incline after 7.30 s
Physics
2 answers:
Alexus [3.1K]3 years ago
6 0

Answer:

123.297 m

Explanation:

A train, traveling at a constant speed of 22.0 m/s,

v = 22.0 m/s

the train slows down with a constant acceleration of magnitude 1.40 m/s².

a_s = -1.4 m/s²

How far has the train traveled up the incline after 7.30 s

t =7.30 s

We can calculate the distance traveled up the incline after 7.30 s by using the formula:

x_f =x_i+v_xt+\frac{1}{2}a_st^2

where;

x_f = the distance traveled up

x_i = 0

v_x = speed of the train

a_s = deceleration

t = time

Substituting our data; we have:

x_f = 0+(22m/s)(7.30s)+\frac{1}{2}(-1.4m/s^2)(7.30s)

x_f =16.06 -37.303

x_f = 123.297 m

Charra [1.4K]3 years ago
4 0

Answer:

123.30 m

Explanation:

Given

Speed, u = 22 m/s

acceleration, a = 1.40 m/s²

time, t = 7.30 s

From equation of motion,

                       v = u + at

where,

v is the final velocity

u is the initial velocity

a is the acceleration

t is time  

                       V = at + U

using equation  v - u = at to get line equation for the graph of the motion of the train on the incline plane

                       V_{x} = mt + V_{o}      where m is the slope

Comparing equation (1) and (2)

V = V_{x}

a = m    

U = V_{o}

Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.

          a = -  1.40 m/s²

Sunstituting a = -  1.40 m/s² and  u = 22 m/s

                        V_{x} = -1.40t + 22

                            V_{x} = -1.40(7.30) + 22

                             V_{x} = -10.22 + 22

                             V_{x} = 11. 78 m/s

The speed of the train at 7.30 s is 11.78 m/s.

The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.

           Area of triangle +  Area of rectangle

          [\frac{1}{2} * (22 - 11.78) * (7.30)]  + [(11.78 - 0) * (7.30)]

                           = 37.303 + 85.994

                           = 123. 297 m

                           ≈ 123. 30 m

                 

You might be interested in
Two conductors made of the same material are connected across the same potential difference. Conductor A has three times the dia
Vitek1552 [10]

Answer:

<em>Good Luck!</em>

<em />

Explanation:

5 0
3 years ago
Which of kepler’s laws explains why the sun has a slightly larger angular diameter in january than in july?
Bond [772]

Kepler’s three law is the answer. Kepler’s 3 is the amount of time it takes to orbit the sun is related to size and distance.  Kepler’s 3 is one of the planetary motion and can be stated as all planets move in elliptical orbits, having the sun sits at one of the foci.

7 0
3 years ago
You use 8x binoculars were used on a warbler (14cm long) in a tree 18cm away. What angle (in degrees) does the image of the warb
mafiozo [28]

Answer:

The angle it subtend on the retina is  \theta_z = 0.44586^o    

Explanation:

From the question we are told that

     The length of the warbler is  L = 14cm = \frac{14}{100} = 0.14m

      The distance from the binoculars is    d = 18cm = \frac{18}{100} = 0.18m

        The magnification of the binoculars is  M =8

Without the 8 X binoculars the  angle made with the angular size of the object  is mathematically represented as

          \theta = \frac{L}{d}

        \theta  = \frac{0.14}{0.18}

           = 0.007778 rad

Now magnification can be represented mathematically as

         M = \frac{\theta _z}{\theta}

Where \theta_z is the angle the image of the warbler subtend on your retina when the   binoculars i.e the  binoculars zoom.

So

      \theta_z = M * \theta

=>    \theta_z =8 * 0.007778

            = 0.0622222224

Generally the conversion to degrees can be mathematically evaluated as

             \theta_z = 0.062222224 * (\frac{360 }{2 \pi rad} )

              \theta_z = 0.44586^o  

7 0
3 years ago
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at
Vesna [10]

Answer:

Y=(\dfrac{3}{16}+t \dfrac{3}{8})e^{-2t}-\dfrac{3}{16}cos 4t

Explanation:

Given that m= 1 slug and given that spring stretches by 2 feet so we can find the spring constant K

mg=k x

1 x 32= k x 2

K=16

And also give that damping force is 8 times the velocity so damping constant C=8.

We know that equation for spring mass system

my''+Cy'+Ky=F

Now by putting the values

1 y"+8 y'+ 16y=6 cos 4 t ----(1)

The general solution of equation Y=CF+IP

Lets assume that at steady state the equation of y will be

y(IP)=A cos 4t+ B sin 4t

To find the constant A and B we have to compare this equation with equation 1.

Now find y' and y" (by differentiate with respect to t)

y'= -4A sin 4t+4B cos 4t

y"=-16A cos 4t-16B sin 4t

Now put the values of y" , y' and y in equation 1

1 (-16A cos 4t-16B sin 4t)+8( -4A sin 4t+4B cos 4t)+16(A cos 4t+ B sin 4t)=6sin4 t

So by comparing the coefficient both sides

-16A+32B+16A=0  So B=0

-16 B-32 A+16B=6  So A=-3/16

y=-3/16 cos 4t

Now to find the CF  of differential equation 1

y"+8 y'+ 16y=6 cos 4 t

Homogeneous version of above equation

m^2+8m+16=0

So CF =(C_1+tC_2)e^{-2t}

So the general equation

Y=(C_1+tC_2)e^{-2t}-3/16 cos 4t

Given that t=0 Y=0 So

C_1=\dfrac{3}{16}

t=0 Y'=0 So

C_2 =\dfrac{3}{8}

Y=(\dfrac{3}{16}+t \dfrac{3}{8})e^{-2t}-\dfrac{3}{16}cos 4t

The above equation is the general equation for motion.

3 0
3 years ago
In attempting to pass the puck to a teammate, a hockey player gives it an initial speed of 2.8 m/s. However, this speed is inade
erastova [34]

Answer:

3.95979 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

v^2-u^2=2as\\\Rightarrow as=\frac{v^2-u^2}{2}\\\Rightarrow as=\frac{0^2-2.8^2}{2}\\\Rightarrow as=-3.92

Here s=\frac{1}{2}s

\\\Rightarrow as=-7.84\ m/s^2

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -7.84}\\\Rightarrow u=3.95979\ m/s

Initial velocity of the puck should be 3.95979 m/s

8 0
3 years ago
Other questions:
  • Vector C has a magnitude of 24.6 m and points in the − y ‑ direction. Vectors A and B both have positive y ‑ components, and mak
    6·1 answer
  • Perspex has a greater refractive index than ice. Explain what happens to the speed and direction of a ray of light at it travels
    14·1 answer
  • PLEASE HURRY HELP ME THIS IS ENGLISH!!! Mr. Tushman looked right at me and smiled and nodded. He put his hand out for me to shak
    13·2 answers
  • A uniform 40-N board supports two children weighing 500 N and 350 N. If the support is at the center of the board and the 500-N
    5·1 answer
  • What is the kinetic energy of a 400kg house that is racing around a track at 17 meters per second?
    14·1 answer
  • What is the difference between diatomic and poly-atomic molecules? Site some examples.
    8·1 answer
  • How is a good slide into a base performed?
    10·1 answer
  • What’s the first step you would take to build a voltaic cell?
    9·1 answer
  • Do all objects have inertia <br><br> a) true<br> b) false
    10·1 answer
  • 2) A ray of light in air is approaching the boundary with water at an
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!