<span>Solids, Liquids, Gases, Plasma, and Bose-Einstein Condensates. The main differences between these states of matter are the densities of the particles.</span>
Answer:
The answer to your question is: 1538095.2 kg of NH3
Explanation:
MW HNO3 = 63 kg
MW NO2 = 46 kg
3 NO2(g) + H2O(l)--- 2 HNO3(aq) + NO(g)
3(46) kg-------------- 2(63) kg
x --------------- 7600000 kg
x = 7600000 x 138/126 = 8323809.5 kg og NO2
MW NO = 30
2 NO(g) + O2(g)---2 NO2(g)
2(30) ------------------2(46)
x ---------------- 8323809.5 kg
x = 8323809.5 x 60/92 = 5428571.4 kg of NO
MW NH3 = 17 kg
4 NH3(g) + 5 O2(g) 4 NO(g) + 6 H2O(g)
4(17) -------------------- 4(30)
x ----------------------- 5428571.4
x = 5428571.4 x 34 / 120
x = 1538095.2 kg of NH3
Answer: (1)CaSO4 -> (2)O2 + (1)CaS
Explanation: edge 2020 chem
Answer : The percentage reduction in intensity is 79.80 %
Explanation :
Using Beer-Lambert's law :



where,
A = absorbance of solution
C = concentration of solution = 
l = path length = 2.5 mm = 0.25 cm
= incident light
= transmitted light
= molar absorptivity coefficient = 
Now put all the given values in the above formula, we get:



If we consider
= 100
then, 
Here 'I' intensity of transmitted light = 20.198
Thus, the intensity of absorbed light
= 100 - 20.198 = 79.80
Now we have to calculate the percentage reduction in intensity.


Therefore, the percentage reduction in intensity is 79.80 %