Hey there!:
Number of moles = ( number of atoms / 6.023*10²³ atoms )
given number of atoms = 5.03*10²⁴
Therefore:
Number of moles B = 5.03*10²⁴ / 6.023*10²³
Number of moles B = 8.35 moles
Hope that helps!
Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
Answer:
<span>The mole concept is important in chemistry because, "</span>Atoms and molecules are very small and the mole concept allows us to count atoms and molecules by weighing macroscopic amounts of material".
Explanation:
To understand this question lets take an example of Hydrogen atom. Let suppose you need to react Hydrogen with Oxygen. You need exactly Two Hydrogen atoms and one Oxygen atom to form one water molecule.
The mass of 1 hydrogen atom is 1.76 × 10⁻²⁴ grams. How will you count the Hydrogen atoms??? How can you measure exactly for 1 Million Hydrogen Atoms???
Answer to these questions and Calculations lies in Mole. It is found that 1 Mole of Hydrogen weights exactly 1.008 gram and contains 6.022 × 10²³ atoms. Now, having this reference in hand you can calculate for any number of Hydrogen atoms.
Result:
So the Mole helps us to zoom a microscopic level to a macroscopic level. :)
Answer:
24m/s
Explanation:
a=change of v/change of t
6m/s^2=v/4s
multiply both sides by 4s
v=24m/s
Answer:
2.77 mol N
Explanation:
M(N2O) = 2*14 + 16 = 44 g/mol
61.0 g * 1 mol/44g = (61/44) mol N2O
N2O ---- 2N
1 mol 2 mol
(61/44) mol x mol
x = (61/44)*2/1 = 2.77 mol N