Answer:
64.52 mg.
Explanation:
The following data were obtained from the question:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Final amount (N) =.?
Next, we shall determine the rate constant (K).
This is illustrated below:
Half life (t½) = 1590 years
Rate/decay constant (K) =?
K = 0.693 / t½
K = 0.693/1590
K = 4.36×10¯⁴ / year.
Finally, we shall determine the amount that will remain after 1000 years as follow:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Rate constant = 4.36×10¯⁴ / year.
Final amount (N) =.?
Log (N₀/N) = kt/2.3
Log (100/N) = 4.36×10¯⁴ × 1000/2.3
Log (100/N) = 0.436/2.3
Log (100/N) = 0.1896
Take the antilog
100/N = antilog (0.1896)
100/N = 1.55
Cross multiply
N x 1.55 = 100
Divide both side by 1.55
N = 100/1.55
N = 64.52 mg
Therefore, the amount that remained after 1000 years is 64.52 mg
Answer:
C
Explanation:
Alleles being more minute than genes,can pass on trait similar or different
Every mole of MgCl2 reacts with 2 moles of KOH, therefore the 4 moles of KOH will only react with 2 moles of MgCl2, making it the limiting reagent and therefore KOH determines how much Mg(OH)2 is produced.
Answer:
In a physical change the appearance or form of the matter changes but the kind of matter in the substance does not. However in a chemical change, the kind of matter changes and at least one new substance with new properties is formed.