The net ionic equation for the neutralization reaction involving equal molar amount amount of HNo3 and KoH is
H^+ + OH^- = H2O (l)
explanation
write the chemical equation
HNO3 (aq) + KOH(aq) = KNO3(aq) +H2O (l)
ionic eequation
H^+(aq) + NO3^- (aq) + K^+9aq) OH^-(aq) = K^+ (aq) + NO3^-(aq) + H2O(l)
cancel the spectator ions( ions which does not take place in equation ) for this case is NO3^- and No3^-
thus the net ionic is
H^+(aq) + OH^- (aq) = H2O(l)
Answer: B:
Explanation:
This is the most reasonable answer
The answer to this would be d. Precipitation patterns .
Answer:
B = CHCl2 + Cl2 --> CHCl3 + Cl
Explanation:
Free radical halogenation is a chlorination reaction on Alkane hydrocarbons. This involves the splitting of molecules into radicals/ unstable molecules in the presence of sunlight/ U.V light which ensures bonding of the molecules.
Free radical chlorination is divided into 3 steps which are:
The initiation step
The propagation step
The termination step
So in reference to the question, propagation step involves two steps.
The first step is where the molecule in this case the methylene chloride(CH2Cl2) loses a hydrogen atom and then bond with a chlorine atom radical to give a nethylwnw chloride radical and HCl.
The second step involves the reaction of this methylene chloride got in the first step with chlorine molecule to form trichloride methane and a chlorine radical.
You would find in the attachment the 2 step mechanism.