By definition we have that the force for time is equal to the product of the mass for the change in speed.
We have then that
F * (delta t) = m * (delta v)
Clearing the mass
m = (F * (delta t)) / (delta v)
Substituting the values
m = ((3.00) * (4.00)) / (7.50-6.00) = 8
answer
The mass of the moving object is 8Kg
Answer:
This question is incomplete
Explanation:
The question is incomplete. However, to determine the time (in seconds) it took a worker to hit the ground from an elevated point. The speed the worker was coming with to the ground and the distance between the elevated point and the ground will have to be considered. Thus the formula to be used here will be
Speed (in meter per second) = distance (in meters) ÷ time (in seconds)
time (in seconds) = distance (in meters) ÷ speed (in meter per seconds)
Answer:
The moment of inertia I is
I = 2.205x10^-4 kg/m^2
Explanation:
Given mass m = 0.5 kg
And side lenght = 0.03 m
Moment of inertia I = mass x radius of rotation squared
I = mr^2
In this case, the radius of rotation is about an axis which is both normal (perpendicular) to and through the center of a face of the cube.
Calculating from the dimensions of the the box as shown in the image below, the radius of rotation r = 0.021 m
Therefore,
I = 0.5 x 0.021^2 = 2.205x10^-4 kg/m^2
Answer:
3. increases with an increase in temperature.
Explanation:
The air more water vapor at higher temperatures because at higher temperatures the air expands and the inter-molecular space increases so the room for water molecules increases.
Warm air keeps the water molecules warm and prevents them from condensing.
The air can hold the moisture only upto its saturation quantity after which the precipitation occurs in the form of rain, snow, hail, sleet etc.