(i) We start by calculating the mass of sugar in the solution:
mass of sugar = concentration × solution mass
mass of sugar = 2.5/100 × 500 = 12.5 g
Then now we can calculate the amount of water:
solution mass = mass of sugar + mass of water
mass of water = solution mass - mass of sugar
mass of water = 500 - 12.5 = 487.5 g
(ii) We use the following reasoning:
If 500 g solution contains 12.5 g sugar
Then X g solution contains 75 g sugar
X=(500×75)/12.5 = 3000 g solution
Now to get the amount of solution in liters we use density (we assume that is equal to 1):
Density = mass / volume
Volume = mass / density
Volume = 3000 / 1 = 3000 liters of sugar solution
Answer:
A strong acid completely ionizes in water.
Isn't a chemical change like something that's not a physical change or physically changed but is something that uses natural chemicals? that's my guess sorry if it's wrong I think I'm wrong though
Answer:
C. Hb binds O2 more tightly than Mb.
Explanation:
<u>Hb and Mb are both oxygen carrier protiens which contain the heme group. Hb has 4 heme units in 1 moleucle which work via coperative effect. On the other hand, Mb has only one heme unit. </u>
<u>From above theory, statement A and B are correct.</u>
<u>Although the heme group of the Mb is identical to those of Hb, Mb has a higher affinity for carrying oxygen than hemoglobin.</u>
<u>Hence, Statement C is wrong.</u>
Thats why the function of hemoglobin is to transport oxygen and that of myoglobin is to store oxygen.
<u>When a curve is plotted between oxygen accepted and the pressure of the oxygen, Hb shows sigmoidal, whereas Mb shows hyperbolic oxygen saturation curves.</u><u> The statement D is correct.</u>
<u>Bohr effect and various factors decribe the statement : Hb-oxygen binding is dependent on physiological changes in pH, whereas Mb-oxygen binding is not. </u><u>The statement E is also correct.</u>
Hydrocarbons are compounds formed by only hydrogen atoms and carbon.
Answer (2)
hope this helps!