D) energy required to remove a valence electron
Explanation:
The ionization energy is the energy required to remove a valence electron from an element.
Different kinds of atoms bind their valence electrons with different amount of energy.
- To remove the electrons, energy must be supplied to the atom.
- The amount of energy required to remove the an electron in the valence shell is the ionization energy or ionization potential.
- The first ionization energy is the energy needed to remove the most loosely bound electron in an atom in the ground state.
- The ionization energy measures the readiness of an atom to loose electrons.
Learn more:
Ionization energy brainly.com/question/5880605
#learnwithBrainly
The number of protons in the nucleus of the atom, I believe. c:
According to the task, you are proveded with patial pressure of CO2 and graphite, and here is complete solution for the task :
At first you have to find n1 =moles of CO2 and n2 which are moles of C
<span>The you go :
</span>

n1 n2 0
-x -x +2x

After that you have to use the formula

Then you have to solve x, and for that you have to use <span>RT/V
And to find total values:</span>

I am absolutely sure that this would be helpful for you.
The temperature that must be to freeze the solution would be -21.1 ° C.
<h3>How to calculate the freezing temperature of this solution?</h3>
To calculate the freezing temperature we must take into account the following information.
- Solution with a salt concentration of 10% is frozen at -6°C
- Solution with a salt concentration of 20% is frozen at -16°C
- Solution with a higher concentration is frozen at -21.1°C
According to the above, it can be inferred that the puddle has a 50% concentration of salt because they had 12 kg of water and 6 kg of salt.
So the lowest freezing temperature would be 21.1°C because the puddle is 50% concentrated.
Note: This question is incomplete because there is some missing information. Here is the missing information:
- A 10% salt solution freezes at about 20°F (-6°C), and a 20% solution freezes at 2°F (-16°C).
- The lowest freezing point obtainable for salt solutions is −21.1 °C
Learn more about freezing in: brainly.com/question/14131507