Answer:
V= 51.4 P^= -0.999
the second one is: an inverse proportion
Explanation:
Just did it on Edg
0.164 g/L is the density of a sample of 1.00 mole of
at 793mmhg and -9.00 degrees celcius.
<h3>What is density?</h3>
Density is the mass of a unit volume of a material substance. The formula for density is d =
, where d is density, M is mass, and V is volume.
Given data:
n = 1.00 mole
P=793 mm hg =1.04342 atm
T=-9.00 degree celcius = -9.00 + 273= 264 K
V=?
Using Ideal Gas Law equation:
PV = n R T
R = gas constant = 0.082057 L-atm/(mol-K)
(1.04342 atm)(V) = 5 X 0.082057 L-atm/(mol-K) X 264 K
V = 103.67 Liters
Now calculate density:
Mole weight of
= 1.00 mole
So, the mass of
= 17.031 g
Density =
Density =
= 0.164 g/L
Hence, 0.164 g/L is the density of a sample of 1.00 mole of
at 793mmhg and -9.00 degrees celcius.
Learn more about the density here:
brainly.com/question/15164682
#SPJ1
Answer:
lol there's no question girly but lmk if ya need help with anything.
Explanation:
If we feel warm after exercising, it means that the temperature of the surroundings has increased. Therefore, heat is released from our body (energy transferred from the system to the surroundings) which means the internal energy of our body is decreased after exercising.
internal energy U is the sum of the kinetic energy brought about by the motion of molecules and the potential energy brought about by the vibrational motion and electric energy of atoms inside molecules in a system or a body with clearly defined limits. The energy contained in every chemical link is often referred to as internal energy. From a microscopic perspective, the internal energy can take on a variety of shapes. For any substance or chemical attraction between molecules.
Internal energy is a significant amount and a state function of a system. Specific internal energy, which is internal energy per mass of the substance in question, is a very intense thermodynamic characteristic that is often represented by the lowercase letter U. As a result, the J/g would be the SI unit for internal specific energy. The term "molar internal energy" and the unit "J/mol" might be used to describe internal energy that is expressed as a function of the quantity of a substance.
Learn more about internal energy brainly.com/question/11278589
#SPJ4
Answer:
True
Explanation:
I did the test and got 100