Answer:
240000 Joules
Explanation:
Applying,
The work that must be done by the frictional force of the brake to stop the car must be equal to the kinetic energy of the car.
W = mv²/2.................. Equation 1
Where W = work done by the frictional force of the brake, m = mass of the car, v = velocity of the car.
From the question,
Given: m = 1200 kg, v = 20 m/s
Substitute these values into equation 1
W = (1200×20²)/2
W = 240000 Joules
Answer:
V=I×R
<em>4</em><em>.</em><em>5</em><em> </em><em>=</em><em> </em><em>I×</em><em>9</em>
<em> </em><em> </em><em> </em><em>I</em><em>.</em><em> </em><em>=</em><em> </em><em>4</em><em>.</em><em>5</em><em>/</em><em>9</em>
<em> </em><em> </em><em> </em><em>I</em><em>. </em><em>=</em><em> </em><em>0</em><em>.</em><em>5</em><em> </em><em>A</em>
<em>curre</em><em>nt</em><em> </em><em>is</em><em> </em><em>0</em><em>.</em><em>5</em><em> </em><em>A</em>
Answer: the sun
Explanation:
The sun's radiant energy reaches the earth's surface either directly through radiation, indirectly through convection, or it can move "across" or "through" objects or materials on the surface via conduction. Let's look more closely at each case. We've probably experienced the feeling of "warmth" of the sun on our skin on a sunny day. Light energy from the sun is reaching us across space and down through the atmosphere through radiation. A dark colored vehicle in the sun quickly becomes warm (or hot!) to the touch because of radiation. The light energy from the sun heats the air in the earth's atmosphere, and this drives convection and transfers thermal energy around. It is possible that we've felt a "hot breeze" on our skin on sunny days. The thermal energy in the air will be carried to objects in its path, and it will warm them.
Answer:
21
Explanation:
21 is x because 211211 1 1 1 1 1aghh