Answer:
Group 8 elements are inert and possess :
1. Low Boiling Points
2. High ionization energies
3. Electronegativities is very low
4. No color, odor
Explanation:
Group 8 elements are also called as Noble Gases. They are unreactive.
They have low boiling points means they remains monoatomic at room temperature. Having high ionization energy means that it is very difficult to remove an electron from its valence shell.
(i) We start by calculating the mass of sugar in the solution:
mass of sugar = concentration × solution mass
mass of sugar = 2.5/100 × 500 = 12.5 g
Then now we can calculate the amount of water:
solution mass = mass of sugar + mass of water
mass of water = solution mass - mass of sugar
mass of water = 500 - 12.5 = 487.5 g
(ii) We use the following reasoning:
If 500 g solution contains 12.5 g sugar
Then X g solution contains 75 g sugar
X=(500×75)/12.5 = 3000 g solution
Now to get the amount of solution in liters we use density (we assume that is equal to 1):
Density = mass / volume
Volume = mass / density
Volume = 3000 / 1 = 3000 liters of sugar solution
Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
<h3>4.8x10⁻³ Liters are required</h3>
Answer:
A. 1, 2, 5
Explanation:
Count the number of Ns in the formula.
- Hope that helped! Please let me know if you need a further explanation.
Conjugate base pairs are acid and bases having common features. These features are the equal gain or loss of protons of the pairs. Conjugate pairs should always be one base and one acid. One would not exist without the other. Conjugate acids are the substances that gains protons while conjugates bases are those that loses protons. <span>The substances in the equilibrium reaction that is given is identified as follows:
HCO3^- + H2O <-----> CO3^2- + H3O^+
acid base conjugate base conjugate acid
HCO3^- ion is an intermediate molecule of CO2 and CO3^2-. When we add OH- to HCO3^-, we produce CO3^2-. And when we add H+ to HCO3, we produce CO2. </span>