<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
Answer:
W = 30 J
Explanation:
given,
Work done = 10 J
Stretch of spring, x = 0.1 m
We know,
dW = F .dx
we know, F = k x


![W = k[\dfrac{x^2}{2}]_0^{0.1}](https://tex.z-dn.net/?f=W%20%3D%20k%5B%5Cdfrac%7Bx%5E2%7D%7B2%7D%5D_0%5E%7B0.1%7D)

k = 2000
now, calculating Work done by the spring when it stretched to 0.2 m from 0.1 m.

![W = 2000 [\dfrac{x^2}{2}]_{0.1}^{0.2} dx](https://tex.z-dn.net/?f=W%20%3D%202000%20%5B%5Cdfrac%7Bx%5E2%7D%7B2%7D%5D_%7B0.1%7D%5E%7B0.2%7D%20dx)
W = 1000 x 0.03
W = 30 J
Hence, work done is equal to 30 J.